Votre recherche
Résultats 4 ressources
-
Abstract Debris-covered glaciers are an important component of the mountain cryosphere and influence the hydrological contribution of glacierized basins to downstream rivers. This study examines the potential to make estimates of debris thickness, a critical variable to calculate the sub-debris melt, using ground-based thermal infrared radiometry (TIR) images. Over four days in August 2019, a ground-based, time-lapse TIR digital imaging radiometer recorded sequential thermal imagery of a debris-covered region of Peyto Glacier, Canadian Rockies, in conjunction with 44 manual excavations of debris thickness ranging from 10 to 110 cm, and concurrent meteorological observations. Inferring the correlation between measured debris thickness and TIR surface temperature as a base, the effectiveness of linear and exponential regression models for debris thickness estimation from surface temperature was explored. Optimal model performance ( R 2 of 0.7, RMSE of 10.3 cm) was obtained with a linear model applied to measurements taken on clear nights just before sunrise, but strong model performances were also obtained under complete cloud cover during daytime or nighttime with an exponential model. This work presents insights into the use of surface temperature and TIR observations to estimate debris thickness and gain knowledge of the state of debris-covered glacial ice and its potential hydrological contribution.
-
Abstract Accelerating mountain glacier recession in a warming climate threatens the sustainability of mountain water resources. The extent to which groundwater will provide resilience to these water resources is unknown, in part due to a lack of data and poorly understood interactions between groundwater and surface water. Here we address this knowledge gap by linking climate, glaciers, surface water, and groundwater into an integrated model of the Shullcas Watershed, Peru, in the tropical Andes, the region experiencing the most rapid mountain‐glacier retreat on Earth. For a range of climate scenarios, our model projects that glaciers will disappear by 2100. The loss of glacial meltwater will be buffered by relatively consistent groundwater discharge, which only receives minor recharge (~2%) from glacier melt. However, increasing temperature and associated evapotranspiration, alongside potential decreases in precipitation, will decrease groundwater recharge and streamflow, particularly for the RCP 8.5 emission scenario. , Plain Language Summary Mountain regions play an important role in water supply, because meltwater from snow and ice feeds rivers during dry periods. Groundwater (water stored in the pore spaces of soils and rock), which flows into rivers, is also an important store of water in mountain areas and may help to protect water resources against the negative impacts of shrinking mountain glaciers. We used extensive field measurements and computer modeling of the Shullcas Watershed in the Peruvian Andes to determine the current and future role of groundwater in the face of climate change. Our model projects that glaciers in our study area will disappear by 2100. The loss of glacier meltwater is buffered in the short term (~30 years) by consistent groundwater flow to rivers. However, in the long term (>60 years), precipitation is expected to decrease and rising temperatures lead to increased evaporation and water use by plants. These factors reduce groundwater recharge and storage, causing dry season streamflow to drop. , Key Points Groundwater accounts for a large fraction of streamflow and only receives minor (~2%) recharge from glaciers in the study catchment in Peru As meltwater decreases, groundwater provides consistent discharge in the near term (~30 years), becoming a larger fraction of streamflow In the long term (>60 years), groundwater storage and discharge decrease in response to higher evapotranspiration and lower precipitation
-
Abstract. This article presents a comprehensive hydrometeorological dataset collected over the past two decades throughout the Cordillera Blanca, Peru. The data-recording sites, located in the upper portion of the Rio Santa valley, also known as the Callejon de Huaylas, span an elevation range of 3738–4750 m a.s.l. As many historical hydrological stations measuring daily discharge across the region became defunct after their installation in the 1950s, there was a need for new stations to be installed and an opportunity to increase the temporal resolution of the streamflow observations. Through inter-institutional collaboration, the hydrometeorological network described in this paper was deployed with the goal of evaluating how progressive glacier mass loss was impacting stream hydrology, and understanding better the local manifestation of climate change over diurnal to seasonal and interannual time scales. The four automatic weather stations supply detailed meteorological observations and are situated in a variety of mountain landscapes, with one on a high-mountain pass, another next to a glacial lake, and two in glacially carved valleys. Four additional temperature and relative humidity loggers complement the weather stations within the Llanganuco valley by providing these data across an elevation gradient. The six streamflow gauges are located in tributaries to the Rio Santa and collect high-temporal-resolution runoff data. The datasets presented here are available freely from https://doi.org/10.4211/hs.35a670e6c5824ff89b3b74fe45ca90e0 (Mateo et al., 2021). Combined, the hydrological and meteorological data collected throughout the Cordillera Blanca enable detailed research of atmospheric and hydrological processes in tropical high-mountain terrain.