Votre recherche
Résultats 3 ressources
-
Evaluating the historical contribution of the volume loss of ice to stream flow based on reconstructed volume changes through the Little Ice Age (LIA) can be directly related to the understanding of glacier-hydrology in the current epoch of rapid glacier loss that has disquieting implications for a water resource in the Cordillera Blanca in the Peruvian Andes. However, the accurate prediction of the future glacial meltwater availability for the developing regional Andean society needs more extensive quantitative estimation from long-term glacial meltwater of reconstructed glacial volume. Modeling the LIA paleoglaciers through the mid-19th century (with the most extensive recent period of mountain glacier expansion having occurred around 1850 AD) in different catchments of the Cordillera Blanca allows us to reconstruct glacier volume and its change from likely combinations of climatic control variables and time. We computed the rate and magnitude of centennial-scale glacier volume changes for glacier surfaces between the LIA and the modern era, as defined by 2011 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2) and 2008 Light Detection and Range (LiDAR) data. The model simulation showed good agreement with the observed geomorphic data and the volume and surface area (V-S) scaling remained within the 25% error range in the reconstructed simulation. Also, we employed a recently demonstrated approach (Baraër, M. et al.) to calculate meltwater contribution to glacierized catchment runoff. The results revealed multiple peaks of both mean annual and dry season discharge that have never been shown in previous research on the same mountain range.
-
Abstract. Climate models predict amplified warming at high elevations in low latitudes, making tropical glacierized regions some of the most vulnerable hydrological systems in the world. Observations reveal decreasing streamflow due to retreating glaciers in the Andes, which hold 99 % of all tropical glaciers. However, the timescales over which meltwater contributes to streamflow and the pathways it takes – surface and subsurface – remain uncertain, hindering our ability to predict how shrinking glaciers will impact water resources. Two major contributors to this uncertainty are the sparsity of hydrologic measurements in tropical glacierized watersheds and the complication of hydrograph separation where there is year-round glacier melt. We address these challenges using a multi-method approach that employs repeat hydrochemical mixing model analysis, hydroclimatic time series analysis, and integrated watershed modeling. Each of these approaches interrogates distinct timescale relationships among meltwater, groundwater, and stream discharge. Our results challenge the commonly held conceptual model that glaciers buffer discharge variability. Instead, in a subhumid watershed on Volcán Chimborazo, Ecuador, glacier melt drives nearly all the variability in discharge (Pearson correlation coefficient of 0.89 in simulations), with glaciers contributing a broad range of 20 %–60 % or wider of discharge, mostly (86 %) through surface runoff on hourly timescales, but also through infiltration that increases annual groundwater contributions by nearly 20 %. We further found that rainfall may enhance glacier melt contributions to discharge at timescales that complement glacier melt production, possibly explaining why minimum discharge occurred at the study site during warm but dry El Niño conditions, which typically heighten melt in the Andes. Our findings caution against extrapolations from isolated measurements: stream discharge and glacier melt contributions in tropical glacierized systems can change substantially at hourly to interannual timescales, due to climatic variability and surface to subsurface flow processes.
-
Abstract Accelerating mountain glacier recession in a warming climate threatens the sustainability of mountain water resources. The extent to which groundwater will provide resilience to these water resources is unknown, in part due to a lack of data and poorly understood interactions between groundwater and surface water. Here we address this knowledge gap by linking climate, glaciers, surface water, and groundwater into an integrated model of the Shullcas Watershed, Peru, in the tropical Andes, the region experiencing the most rapid mountain‐glacier retreat on Earth. For a range of climate scenarios, our model projects that glaciers will disappear by 2100. The loss of glacial meltwater will be buffered by relatively consistent groundwater discharge, which only receives minor recharge (~2%) from glacier melt. However, increasing temperature and associated evapotranspiration, alongside potential decreases in precipitation, will decrease groundwater recharge and streamflow, particularly for the RCP 8.5 emission scenario. , Plain Language Summary Mountain regions play an important role in water supply, because meltwater from snow and ice feeds rivers during dry periods. Groundwater (water stored in the pore spaces of soils and rock), which flows into rivers, is also an important store of water in mountain areas and may help to protect water resources against the negative impacts of shrinking mountain glaciers. We used extensive field measurements and computer modeling of the Shullcas Watershed in the Peruvian Andes to determine the current and future role of groundwater in the face of climate change. Our model projects that glaciers in our study area will disappear by 2100. The loss of glacier meltwater is buffered in the short term (~30 years) by consistent groundwater flow to rivers. However, in the long term (>60 years), precipitation is expected to decrease and rising temperatures lead to increased evaporation and water use by plants. These factors reduce groundwater recharge and storage, causing dry season streamflow to drop. , Key Points Groundwater accounts for a large fraction of streamflow and only receives minor (~2%) recharge from glaciers in the study catchment in Peru As meltwater decreases, groundwater provides consistent discharge in the near term (~30 years), becoming a larger fraction of streamflow In the long term (>60 years), groundwater storage and discharge decrease in response to higher evapotranspiration and lower precipitation