Votre recherche
Résultats 2 ressources
-
Climate change has a significant influence on streamflow variation. The aim of this study is to quantify different sources of uncertainties in future streamflow projections due to climate change. For this purpose, 4 global climate models, 3 greenhouse gas emission scenarios (representative concentration pathways), 6 downscaling models, and a hydrologic model (UBCWM) are used. The assessment work is conducted for 2 different future time periods (2036 to 2065 and 2066 to 2095). Generalized extreme value distribution is used for the analysis of the flow frequency. Strathcona dam in the Campbell River basin, British Columbia, Canada, is used as a case study. The results show that the downscaling models contribute the highest amount of uncertainty to future streamflow predictions when compared to the contributions by global climate models or representative concentration pathways. It is also observed that the summer flows into Strathcona dam will decrease, and winter flows will increase in both future time periods. In addition to these, the flow magnitude becomes more uncertain for higher return periods in the Campbell River system under climate change.
-
Summary Impacts of global climate change on water resources systems are assessed by downscaling coarse scale climate variables into regional scale hydro-climate variables. In this study, a new multisite statistical downscaling method based on beta regression (BR) is developed for generating synthetic precipitation series, which can preserve temporal and spatial dependence along with other historical statistics. The beta regression based downscaling method includes two main steps: (1) prediction of precipitation states for the study area using classification and regression trees, and (2) generation of precipitation at different stations in the study area conditioned on the precipitation states. Daily precipitation data for 53years from the ANUSPLIN data set is used to predict precipitation states of the study area where predictor variables are extracted from the NCEP/NCAR reanalysis data set for the same interval. The proposed model is applied to downscaling daily precipitation at ten different stations in the Campbell River basin, British Columbia, Canada. Results show that the proposed downscaling model can capture spatial and temporal variability of local precipitation very well at various locations. The performance of the model is compared with a recently developed non-parametric kernel regression based downscaling model. The BR model performs better regarding extrapolation compared to the non-parametric kernel regression model. Future precipitation changes under different GHG (greenhouse gas) emission scenarios also projected with the developed downscaling model that reveals a significant amount of changes in future seasonal precipitation and number of wet days in the river basin.