Votre recherche
Résultats 2 ressources
-
Abstract The Canadian Precipitation Analysis (CaPA) system provides near-real-time precipitation analyses over Canada by combining observations with short-term numerical weather prediction forecasts. CaPA’s snowfall estimates suffer from the lack of accurate solid precipitation measurements to correct the first-guess estimate. Weather radars have the potential to add precipitation measurements to CaPA in all seasons but are not assimilated in winter due to radar snowfall estimate imprecision and lack of precipitation gauges for calibration. The main objective of this study is to assess the impact of assimilating Canadian dual-polarized radar-based snowfall data in CaPA to improve precipitation estimates. Two sets of experiments were conducted to evaluate the impact of including radar snowfall retrievals, one set using the high-resolution CaPA (HRDPA) with the currently operational quality control configuration and another increasing the number of assimilated surface observations by relaxing quality control. Experiments spanned two winter seasons (2021 and 2022) in central Canada, covering part of the entire CaPA domain. The results showed that the assimilation of radar-based snowfall data improved CaPA’s precipitation estimates 81.75% of the time for 0.5-mm precipitation thresholds. An increase in the probability of detection together with a decrease in the false alarm ratio suggested an improvement of the precipitation spatial distribution and estimation accuracy. Additionally, the results showed improvements for both precipitation mass and frequency biases for low precipitation amounts. For larger thresholds, the frequency bias was degraded. The results also indicated that the assimilation of dual-polarization radar data is beneficial for the two CaPA configurations tested in this study.
-
Abstract. Environment and Climate Change Canada has initiated the production of a 1980–2018, 10 km, North American precipitation and surface reanalysis. ERA-Interim is used to initialize the Global Deterministic Reforecast System (GDRS) at a 39 km resolution. Its output is then dynamically downscaled to 10 km by the Regional Deterministic Reforecast System (RDRS). Coupled with the RDRS, the Canadian Land Data Assimilation System (CaLDAS) and Precipitation Analysis (CaPA) are used to produce surface and precipitation analyses. All systems used are close to operational model versions and configurations. In this study, a 7-year sample of the reanalysis (2011–2017) is evaluated. Verification results show that the skill of the RDRS is stable over time, and equivalent to that of the current operational system. The impact of the coupling between RDRS and CaLDAS is explored using an early version of the reanalysis system which was run at 15 km resolution for the period 2010–2014, with and without the use of CaLDAS. Significant improvements are observed with CaLDAS in the lower troposphere and surface layer, especially for the 850 hPa dew point and absolute temperatures in summer. Precipitation is further improved through an offline precipitation analysis which allows the assimilation of additional observations of 24-h precipitation totals. The final dataset should be of particular interest for hydrological applications focusing on trans-boundary and northern watersheds, where existing products often show discontinuities at the border and assimilate very few – if any – precipitation observations.