Votre recherche
Résultats 6 ressources
-
This study analyzes the uncertainty of seasonal (winter and summer) precipitation extremes as simulated by a recent version of the Canadian Regional Climate Model (CRCM) using 16 simulations (1961–1990), considering four sources of uncertainty from: (a) the domain size, (b) the driving Atmosphere–Ocean Global Climate Models (AOGCM), (c) the ensemble member for a given AOGCM and (d) the internal variability of the CRCM. These 16 simulations are driven by 2 AOGCMs (i.e. CGCM3, members 4 and 5, and ECHAM5, members 1 and 2), and one set of re-analysis products (i.e. ERA40), using two domain sizes (AMNO, covering all North America and QC, a smaller domain centred over the Province of Québec). In addition to the mean seasonal precipitation, three seasonal indices are used to characterize different types of variability and extremes of precipitation: the number of wet days, the maximum number of consecutive dry days, and the 95th percentile of daily precipitation. Results show that largest source of uncertainty in summer comes from the AOGCM selection and the choice of domain size, followed by the choice of the member for a given AOGCM. In winter, the choice of the member becomes more important than the choice of the domain size. Simulated variance sensitivity is greater in winter than in summer, highlighting the importance of the large-scale circulation from the boundary conditions. The study confirms a higher uncertainty in the simulated heavy rainfall than the one in the mean precipitation, with some regions along the Great Lakes—St-Lawrence Valley exhibiting a systematic higher uncertainty value.
-
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affected by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. These results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.
-
Abstract Gridded estimates of precipitation using both satellite and observational station data are regularly used as reference products in the evaluation of basic climate fields and derived indices as simulated by regional climate models (RCMs) over the current period. One of the issues encountered in RCM evaluation is the fact that RCMs and reference fields are usually on different grids and often at different horizontal resolutions. A proper RCM evaluation requires remapping on a common grid. For the climate indices or other derived fields, the remapping can be done in two ways: either as a first-step operation on the original field with the derived index computed on the final/common grid in a second step, or to compute first the climate index on the original grid before remapping or regridding it as a last-step operation on the final/common grid. The purpose of this paper is to illustrate how the two approaches affect the final field, thus contributing to one of the Coordinated Regional Climate Downscaling Experiment (CORDEX) in Africa (CORDEX-Africa) goals of providing a benchmark framework for RCM evaluation over the West Africa monsoon area, using several daily precipitation indices. The results indicate the advantage of using the last-step remapping procedure, regardless of the mathematical method chosen for the remapping, in order to minimize errors in the indices under evaluation.
-
The West Africa rainfall regime constitutes a considerable challenge for Regional Climate Models (RCMs) due to the complexity of dynamical and physical processes that characterise the West African Monsoon. In this paper, daily precipitation statistics are evaluated from the contributions to the AFRICA-CORDEX experiment from two ERA-Interim driven Canadian RCMs: CanRCM4, developed at the Canadian Centre for Climate Modelling and Analysis (CCCma) and CRCM5, developed at the University of Québec at Montréal. These modelled precipitation statistics are evaluated against three gridded observed datasets—the Global Precipitation Climatology Project (GPCP), the Tropical Rainfall Measuring Mission (TRMM), and the Africa Rainfall Climatology (ARC2)—and four reanalysis products (ECMWF ERA-Interim, NCEP/DOE Reanalysis II, NASA MERRA and NOAA-CIRES Twentieth Century Reanalysis). The two RCMs share the same dynamics from the Environment Canada GEM forecast model, but have two different physics’ packages: CanRCM4 obtains its physics from CCCma’s global atmospheric model (CanAM4), while CRCM5 shares a number of its physics modules with the limited-area version of GEM forecast model. The evaluation is focused on various daily precipitation statistics (maximum number of consecutive wet days, number of moderate and very heavy precipitation events, precipitation frequency distribution) and on the monsoon onset and retreat over the Sahel region. We find that the CRCM5 has a good representation of daily precipitation statistics over the southern Sahel, with spatial distributions close to GPCP dataset. Some differences are observed in the northern part of the Sahel, where the model is characterised by a dry bias. CanRCM4 and the ERA-Interim and MERRA reanalysis products overestimate the number of wet days over Sahel with a shift in the frequency distribution toward smaller daily precipitation amounts than in observations. Both RCMs and reanalyses have difficulties in reproducing the local onset date over the Sahel region. Nevertheless, the large-scale features of the monsoon precipitation evolution over West Africa are well reproduced by the RCMs, whereas the northern limit of the rainy bands is less accurately reproduced. Both RCMs exhibit an overall good representation of the local retreat index over the Sahel region.