Votre recherche
Résultats 6 ressources
-
In the context of global warming, the Clausius–Clapeyron (CC) relationship has been widely used as an indicator of the evolution of the precipitation regime, including daily and sub-daily extremes. This study aims to verify the existence of links between precipitation extremes and 2 m air temperature for the Ottawa River Basin (ORB, Canada) over the period 1981–2010, applying an exponential relationship between the 99th percentile of precipitation and temperature characteristics. Three simulations of the Canadian Regional Climate Model version 5 (CRCM5), at three different resolutions (0.44°, 0.22°, and 0.11°), one simulation using the recent CRCM version 6 (CRCM6) at “convection-permitting” resolution (2.5 km), and two reanalysis products (ERA5 and ERA5-Land) were used to investigate the CC scaling hypothesis that precipitation increases at the same rate as the atmospheric moisture-holding capacity (i.e., 6.8%/°C). In general, daily precipitation follows a lower rate of change than the CC scaling with median values between 2 and 4%/°C for the ORB and with a level of statistical significance of 5%, while hourly precipitation increases faster with temperature, between 4 and 7%/°C. In the latter case, rates of change greater than the CC scaling were even up to 10.2%/°C for the simulation at 0.11°. A hook shape is observed in summer for CRCM5 simulations, near the 20–25 °C temperature threshold, where the 99th percentile of precipitation decreases with temperature, especially at higher resolution with the CRCM6 data. Beyond the threshold of 20 °C, it appears that the atmospheric moisture-holding capacity is not the only determining factor for generating precipitation extremes. Other factors need to be considered, such as the moisture availability at the time of the precipitation event, and the presence of dynamical mechanisms that increase, for example, upward vertical motion. As mentioned in previous studies, the applicability of the CC scaling should not be generalised in the study of precipitation extremes. The time and spatial scales and season are also dependent factors that must be taken into account. In fact, the evolution of precipitation extremes and temperature relationships should be identified and evaluated with very high spatial resolution simulations, knowing that local temperature and regional physiographic features play a major role in the occurrence and intensity of precipitation extremes. As precipitation extremes have important effects on the occurrence of floods with potential deleterious damages, further research needs to explore the sensitivity of projections to resolution with various air temperature and humidity thresholds, especially at the sub-daily scale, as these precipitation types seem to increase faster with temperature than with daily-scale values. This will help to develop decision-making and adaptation strategies based on improved physical knowledge or approaches and not on a single assumption based on CC scaling.
-
This study analyzes the uncertainty of seasonal (winter and summer) precipitation extremes as simulated by a recent version of the Canadian Regional Climate Model (CRCM) using 16 simulations (1961–1990), considering four sources of uncertainty from: (a) the domain size, (b) the driving Atmosphere–Ocean Global Climate Models (AOGCM), (c) the ensemble member for a given AOGCM and (d) the internal variability of the CRCM. These 16 simulations are driven by 2 AOGCMs (i.e. CGCM3, members 4 and 5, and ECHAM5, members 1 and 2), and one set of re-analysis products (i.e. ERA40), using two domain sizes (AMNO, covering all North America and QC, a smaller domain centred over the Province of Québec). In addition to the mean seasonal precipitation, three seasonal indices are used to characterize different types of variability and extremes of precipitation: the number of wet days, the maximum number of consecutive dry days, and the 95th percentile of daily precipitation. Results show that largest source of uncertainty in summer comes from the AOGCM selection and the choice of domain size, followed by the choice of the member for a given AOGCM. In winter, the choice of the member becomes more important than the choice of the domain size. Simulated variance sensitivity is greater in winter than in summer, highlighting the importance of the large-scale circulation from the boundary conditions. The study confirms a higher uncertainty in the simulated heavy rainfall than the one in the mean precipitation, with some regions along the Great Lakes—St-Lawrence Valley exhibiting a systematic higher uncertainty value.
-
Dans le contexte du réchauffement planétaire, la relation de Clausius Clapeyron (CC) est utilisée comme un indicateur de l’évolution des précipitations extrêmes. Parmi les théories proposées, nous utilisons dans notre recherche une relation exponentielle qui fait le lien entre l’évolution des centiles les plus extrêmes des précipitations et le changement de la température ΔT dans le climat actuel. Selon cette théorie, les précipitations augmentent au même rythme que la capacité de rétention d'humidité dans l’atmosphère, expliquée par la relation de CC, avec un taux de changement d'environ 7 % par degré Celsius pour des valeurs de température et de pression près de la surface. Ainsi, le présent travail vise à vérifier l’existence de liens physiquement plausibles dans la relation entre les précipitations extrêmes et la température de l’air pour la région du Bassin Versant de la Rivière des Outaouais (BVRO) sur la période 1981-2010, à l’aide des simulations du Modèle Régional Canadien du Climat (MRCC) (versions 5 et 6), développé au centre ESCER, et de deux produits de réanalyses du Centre Européen pour les prévisions météorologiques à moyen terme (CEPMMT) à différentes résolutions spatiales. En général, les précipitations quotidiennes suivent un taux de changement inférieur à celui de CC ; tandis que les précipitations horaires augmentent plus rapidement avec la température. Dans ce dernier cas, pour la simulation du MRCC5 à plus haute résolution spatiale, des taux de changement supérieurs à CC ont même été produits, jusqu’à 10,2 %/°C. Ce travail a également mis en évidence qu’au-delà du seuil de 20°C, la capacité de rétention d'humidité de l’atmosphère n’est pas le seul facteur déterminant pour générer des précipitations extrêmes, et que d’autres facteurs sont à considérer, comme la disponibilité de l'humidité au moment de l'événement de précipitation et la présence de mécanismes dynamiques qui favorisent les mouvements verticaux ascendants. Un comportement sous forme de crochet, qui décrit une augmentation des précipitations jusqu'à un seuil de température, est observé dans la saison estivale avec le MRCC5, mais il a disparu avec les simulations du MRCC6, ce qui pourrait être une conséquence d’avoir seulement une année de simulation disponible ou bien d’une conséquence de la très haute résolution du modèle sur les intervalles de température et sur les effets locaux. En conclusion, l'applicabilité de la relation de CC ne doit pas être généralisée quant à l’étude des précipitations extrêmes, il est également important de considérer l'échelle temporelle, la résolution du modèle utilisé et la saison de l'année. L’évolution de cette relation de CC devrait être évaluée avec des simulations à très haute résolution spatiale (version en développement au centre ESCER), et pour d’autres zones climatiques, sachant que les intervalles de températures et les effets locaux exercent un rôle majeur sur les occurrences et les intensités des fortes précipitations. Ces éléments sont essentiels à intégrer dans le contexte des changements climatiques, en raison des conséquences associées aux fortes précipitations, notamment sur l’occurrence des inondations. _____________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Clausius-Clapeyron, évènements extrêmes, aléas météorologiques, risques d’inondation, changements climatiques
-
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affected by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. These results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.
-
The West Africa rainfall regime constitutes a considerable challenge for Regional Climate Models (RCMs) due to the complexity of dynamical and physical processes that characterise the West African Monsoon. In this paper, daily precipitation statistics are evaluated from the contributions to the AFRICA-CORDEX experiment from two ERA-Interim driven Canadian RCMs: CanRCM4, developed at the Canadian Centre for Climate Modelling and Analysis (CCCma) and CRCM5, developed at the University of Québec at Montréal. These modelled precipitation statistics are evaluated against three gridded observed datasets—the Global Precipitation Climatology Project (GPCP), the Tropical Rainfall Measuring Mission (TRMM), and the Africa Rainfall Climatology (ARC2)—and four reanalysis products (ECMWF ERA-Interim, NCEP/DOE Reanalysis II, NASA MERRA and NOAA-CIRES Twentieth Century Reanalysis). The two RCMs share the same dynamics from the Environment Canada GEM forecast model, but have two different physics’ packages: CanRCM4 obtains its physics from CCCma’s global atmospheric model (CanAM4), while CRCM5 shares a number of its physics modules with the limited-area version of GEM forecast model. The evaluation is focused on various daily precipitation statistics (maximum number of consecutive wet days, number of moderate and very heavy precipitation events, precipitation frequency distribution) and on the monsoon onset and retreat over the Sahel region. We find that the CRCM5 has a good representation of daily precipitation statistics over the southern Sahel, with spatial distributions close to GPCP dataset. Some differences are observed in the northern part of the Sahel, where the model is characterised by a dry bias. CanRCM4 and the ERA-Interim and MERRA reanalysis products overestimate the number of wet days over Sahel with a shift in the frequency distribution toward smaller daily precipitation amounts than in observations. Both RCMs and reanalyses have difficulties in reproducing the local onset date over the Sahel region. Nevertheless, the large-scale features of the monsoon precipitation evolution over West Africa are well reproduced by the RCMs, whereas the northern limit of the rainy bands is less accurately reproduced. Both RCMs exhibit an overall good representation of the local retreat index over the Sahel region.