Votre recherche
Résultats 2 ressources
-
Abstract Retrospective estimation of daily streamflow for all rivers within a territory is of practical interest for sustainable and optimal water management. This implies, however, the availability of methods for providing accurate estimations of flow for ungauged rivers. This study compares the potential of statistical interpolation (SI)—a simple data assimilation technique that combines observations and simulations from hydrological modelling—with four other approaches: nearest neighbour, direct use of outputs from hydrological modelling, ordinary and topological kriging. Through subsampling cross-validation analyses based on the modified Kling-Gupta efficiency indicator, we show that SI compares favourably with these other approaches. While the performance of other methods depends on the configuration of the ungauged site in regards to the neighbouring reference sites, SI is less affected by these configurations. SI outperforms the other approaches particularly where the ungauged site is relatively distant from observation sites. In these cases, SI performance depends on the performance of the background model that relies on simulations of hydrological processes forced by precipitation and temperature observations. Our findings offer the potential for heightened performance estimates through an improvement of hydrological modelling and the use of more complex assimilation techniques for exploiting the model.
-
This work explores the performances of the hydrologic model Hydrotel, applied to 36 catchments located in the Province of Quebec, Canada. A local calibration (each catchment taken individually) scheme and a global calibration (a single parameter set sought for all catchments) scheme are compared in a differential split-sample test perspective. Such a methodology is useful to gain insights on a model’s skills under different climatic conditions, in view of its use for climate change impact studies. The model was calibrated using both schemes on five non-continuous dry and cold years and then evaluated on five dissimilar humid and warm years. Results indicate that, as expected, local calibration leads to better performances than the global one. However, global calibration achieves satisfactory simulations while producing a better temporal robustness (i.e., model transposability to periods with different climatic conditions). Global calibration, in opposition to local calibration, thus imposes spatial consis...