Votre recherche
Résultats 2 ressources
-
Abstract The snow melt from the High Atlas represents a crucial water resource for crop irrigation in the semiarid regions of Morocco. Recent studies have used assimilation of snow cover area data from high‐resolution optical sensors to compute the snow water equivalent and snow melt in other mountain regions. These techniques however require large model ensembles, and therefore it is a challenge to determine the adequate model resolution that yields accurate results with reasonable computation time. Here we study the sensitivity of an energy balance model to the resolution of the model grid for a pilot catchment in the High Atlas. We used a time series of 8‐m resolution snow cover area maps with an average revisit time of 7.5 days to evaluate the model results. The digital elevation model was generated from Pléiades stereo images and resampled from 8 to 30, 90, 250, 500, and 1,000 m. The results indicate that the model performs well from 8 to 250 m but the agreement with observations drops at 500 m. This is because significant features of the topography were too smoothed out to properly characterize the spatial variability of meteorological forcing, including solar radiation. We conclude that a resolution of 250 m might be sufficient in this area. This result is consistent with the shape of the semivariogram of the topographic slope, suggesting that this semivariogram analysis could be used to transpose our conclusion to other study regions. , Key Points A distributed energy balance snow model is applied in the High Atlas for the first time The model performance decreases at resolution coarser than 250 m This result is consistent with the semivariogram of the topographic slope
-
Estimating snowmelt in semi-arid mountain ranges is an important but challenging task, due to the large spatial variability of the snow cover and scarcity of field observations. Adding solar radiation as snowmelt predictor within empirical snow models is often done to account for topographically induced variations in melt rates. This study examines the added value of including different treatments of solar radiation within empirical snowmelt models and benchmarks their performance against MODIS snow cover area (SCA) maps over the 2003-2016 period. Three spatially distributed, enhanced temperature index models that, respectively, include the potential clear-sky direct radiation, the incoming solar radiation and net solar radiation were compared with a classical temperature-index (TI) model to simulate snowmelt, SWE and SCA within the Rheraya basin in the Moroccan High Atlas Range. Enhanced models, particularly that which includes net solar radiation, were found to better explain the observed SCA variability compared to the TI model. However, differences in model performance in simulating basin wide SWE and SCA were small. This occurs because topographically induced variations in melt rates simulated by the enhanced models tend to average out, a situation favored by the rather uniform distribution of slope aspects in the basin. While the enhanced models simulated more heterogeneous snow cover conditions, aggregating the simulated SCA from the 100 m model resolution towards the MODIS resolution (500 m) suppresses key spatial variability related to solar radiation, which attenuates the differences between the TI and the radiative models. Our findings call for caution when using MODIS for calibration and validation of spatially distributed snow models.