Votre recherche
Résultats 3 ressources
-
Abstract The database of the Quebec Ministry of Transport allowed us to analyze the occurrence of ice-block falls and snow avalanches for the past decades along national road 132. The results show that ice structure collapse may be categorized into three distinct phases by using daily temperatures (minimum, maximum, and average) and the cumulative degree day (temperatures above 0°C) since the March 1 st , corresponding to the beginning of the ice wall melting period: 1) a short and intense period of ice-block falls from the mid-April to the beginning of May; 2) a period of constant activity, mainly during the two first weeks of May; and 3) isolated residual activity, with a low frequency of ice-block falls until the month of June. The snow avalanche days were mainly characterized by significant snowfalls or rain-on-snow events with temperature>0°C. The multi-hazard probability was then evaluated based on the timing and relative frequency of ice-block fall and the modeling of sufficient snowpack for avalanching. This simple method to assess the synergistic effect of hillslope processes allows a better understanding of the spring avalanche regime related to the collapse of ice structures. These findings are expected to assist in the management of natural hazards and to improve our knowledge of spatiotemporal dynamics of mass-wasting events on highways.
-
Abstract Resilience has become a cornerstone for risk management and disaster reduction. However, it has evolved extensively both etymologically and conceptually in time and across scientific disciplines. The concept has been (re)shaped by the evolution of research and practice efforts. Considered the opposite of vulnerability for a long time, resilience was first defined as the ability to resist, bounce back, cope with, and recover quickly from the impacts of hazards. To avoid the possible return to conditions of vulnerability and exposure to hazards, the notions of post-disaster development, transformation, and adaptation (build back better) and anticipation, innovation, and proactivity (bounce forward) were then integrated. Today, resilience is characterized by a multitude of components and several classifications. We present a selection of 25 components used to define resilience, and an interesting linkage emerges between these components and the dimensions of risk management (prevention, preparedness, response, and recovery), offering a perspective to strengthen resilience through the development of capacities. Despite its potential, resilience is subject to challenges regarding its operationalization, effectiveness, measurement, credibility, equity, and even its nature. Nevertheless, it offers applicability and opportunities for local communities as well as an interdisciplinary look at global challenges.