Votre recherche
Résultats 23 ressources
-
The Appalachian Mountains of Eastern Canada are prone to several mass-wasting processes related to the geology and the nearby presence of large water bodies that influence the climate. Superimposed on this rugged terrain is the impacts of ongoing climate change, which may increase the magnitude, frequency, and duration of an array of hillslope phenomena. In this regard, the quantification of sediment fluxes at various spatiotemporal scales is prerequisite to reducing the exposure of infrastructure and communities, as well as to better understanding the mountain landscape evolution. Here, we report the quantitative modeling of sediment fluxes of several hillslope processes, mainly based on radiocarbon dating, which in turn improves understanding of how sediment has been eroded and transported through these mountain catchments since deglaciation. The results show a variable pattern of paraglacial effects at local and regional scales, highlighting the importance of ecological and hydroclimatic conditions in controlling the duration of glacially conditioned sedimentary stock exhaustion, and therefore the delay of paraglacial responses by geomorphic land systems. Current active scree slopes under the cold-temperate climate are characterized by sedimentation rates slightly lower than those calculated for the periglacial period following deglaciation, and even the sporadic remobilization of the primary stock by alluvial fan dynamics appears to be significant, testifying to a duration of paraglacial processes of more than 10,000 years.
-
Floods, intensified by climate change, pose major challenges for flood zone management in Quebec. This report addresses these issues through two complementary aspects: a historical analysis of the evolution of flood zone management in Quebec and the projected impact of the cartographic and regulatory overhaul, as well as an exploration of the imaginary surrounding the flood-prone territory of the city of Lachute, which has faced recurrent floods for decades and yet continues to be inhabited. The historical analysis reveals that the major floods of 1974, 1976, 2017, and 2019 marked significant turning points in Quebec’s risk management, particularly by highlighting gaps in the regulatory framework and flood zone mapping. The adoption of the Act Respecting Land Use Planning and Development (LAU) in 1979 and the Policy for the Protection of Shorelines, Littorals, and Floodplains (PPRLPI) in 1987 represented a shift toward a preventive approach. However, inconsistencies, insufficient updates to maps, and uneven enforcement of standards have hindered their effectiveness. The catastrophic floods of 2017 and 2019 triggered a regulatory overhaul, a modernization of mapping, and measures to strengthen community resilience. In 2022, a transitional regime came into effect to tighten the regulation of activities in flood zones, pending the adoption of a risk-based management framework. However, to this day, the regulatory perimeters proposed in the modernization project fail to account for the adaptive capacities deployed by communities to live with water, thus providing a biased interpretation of flood risk. The second part explores the social and cultural representations associated with Lachute’s flood-prone territory. It highlights the complex relationships that have developed between residents and the Rivière du Nord through successive flooding episodes and the adaptation strategies implemented to cope, particularly by those who have repeatedly experienced flooding. These residents have come to live with overflow events and to (co)exist with water, challenging the persistent notion that flood-prone areas are inherently dangerous. While local strategies are sometimes innovative, they remain constrained by a regulatory framework that disregards the human experience of the territory and the specific ways in which people inhabit exposed areas to learn to manage flood risks. In summary, this report underscores the urgency of a territorialized, risk-based approach to modernizing flood zone management. It also highlights the need to look beyond cartographic boundaries and better integrate human and cultural dimensions into planning policies, as illustrated in the case of Lachute, to more accurately reflect the true level of risk. These reflections aim to promote more coherent, sustainable, and acceptable management, planning, and development of exposed territories in response to the growing challenges posed by climate change.
-
Abstract The database of the Quebec Ministry of Transport allowed us to analyze the occurrence of ice-block falls and snow avalanches for the past decades along national road 132. The results show that ice structure collapse may be categorized into three distinct phases by using daily temperatures (minimum, maximum, and average) and the cumulative degree day (temperatures above 0°C) since the March 1 st , corresponding to the beginning of the ice wall melting period: 1) a short and intense period of ice-block falls from the mid-April to the beginning of May; 2) a period of constant activity, mainly during the two first weeks of May; and 3) isolated residual activity, with a low frequency of ice-block falls until the month of June. The snow avalanche days were mainly characterized by significant snowfalls or rain-on-snow events with temperature>0°C. The multi-hazard probability was then evaluated based on the timing and relative frequency of ice-block fall and the modeling of sufficient snowpack for avalanching. This simple method to assess the synergistic effect of hillslope processes allows a better understanding of the spring avalanche regime related to the collapse of ice structures. These findings are expected to assist in the management of natural hazards and to improve our knowledge of spatiotemporal dynamics of mass-wasting events on highways.
-
Abstract Overcooled talus slopes are generally described as islands of sporadic permafrost below the lower alpine limit of permafrost. The negative thermal anomaly of the ground is mainly consecutive to the internal ventilation of the deposit, but it is also conditioned by multiple factors as topography, slope aspect and incline, openwork structure and coarseness of the deposit, air temperature, solar radiation and wind regime. Therefore, the study of the spatiotemporal dynamics of ventilation processes allows a better understanding of the phenomenon. At Cannon Cliff, New Hampshire (USA), several field visits and environmental monitoring allowed us to describe the varying nature and significance of the ventilation mechanisms that can be observed at the ground surface and associated with both the intensity and direction of the airflows in a talus debris accumulation/protalus rampart system. The thermal negative anomalies are strong enough to lower the ground temperature to the point of preserving ice during the late spring and summer seasons. The monitoring of the gradient between external (air) and internal (talus) temperatures coupled with several dendroecological and geomorphological analyses provided a complete environmental picture of the impacts, feedback and extent of the phenomenon.
-
Abstract The highly fissile lithology of the rockwalls and the diversity of mass‐wasting processes provide a specific character to the active talus slopes of the northern Gaspé Peninsula since deglaciation. At a regional scale, the geology of the rockwalls, the patterns and modalities of deglaciation and the evolution towards a cold temperate morphoclimatic regime in a maritime context still influence the geomorphological dynamics of scree slopes today. At a local scale, the south–north orientation of the main coastal valleys influences insolation and exposure to prevailing winds, which in turn influence the snow cover regime and the occurrence of freeze–thaw cycles. The statistical analyses carried out from the mapping of 43 talus slopes and their geometric variables allowed the identification of significant environmental factors for the characterization of the dominant geomorphic processes: snow avalanches, frost‐coasted clast flows, debris flows and rockfalls. Slope aspect appears to be a key parameter in the nature of the processes acting on the talus slopes. East‐ and north‐facing talus slopes are generally covered by a significant snowpack in winter and the dominant processes are snow avalanches and debris flows. West‐ and south‐facing talus slopes face prevailing winds and insolation and are subject to frost‐coated clast flows, the main driver for forest regression, and rockfalls. However, the evolution of scree slopes in forested environments remains extremely complex due to the multiscale components that affect their evolution in the short, medium and long term.
-
Abstract Resilience has become a cornerstone for risk management and disaster reduction. However, it has evolved extensively both etymologically and conceptually in time and across scientific disciplines. The concept has been (re)shaped by the evolution of research and practice efforts. Considered the opposite of vulnerability for a long time, resilience was first defined as the ability to resist, bounce back, cope with, and recover quickly from the impacts of hazards. To avoid the possible return to conditions of vulnerability and exposure to hazards, the notions of post-disaster development, transformation, and adaptation (build back better) and anticipation, innovation, and proactivity (bounce forward) were then integrated. Today, resilience is characterized by a multitude of components and several classifications. We present a selection of 25 components used to define resilience, and an interesting linkage emerges between these components and the dimensions of risk management (prevention, preparedness, response, and recovery), offering a perspective to strengthen resilience through the development of capacities. Despite its potential, resilience is subject to challenges regarding its operationalization, effectiveness, measurement, credibility, equity, and even its nature. Nevertheless, it offers applicability and opportunities for local communities as well as an interdisciplinary look at global challenges.
-
This paper explores the risk approach, considering both the physical and human dimensions of the phenomenon in order to produce a more realistic and spatial analysis of risk. Exposure and vulnerability were combined and evaluated multidimensionally, considering individual, socio-economic, and structural (building-related) aspects. These risk factors were then integrated in a multi-criteria analysis in order to produce a comprehensive risk index that could be visualized at the building scale. The relative importance of the indicators was determined through a participatory process involving local and national experts on civil security and flooding. Particular attention was paid to individual vulnerability, including perception and preparedness for flood risk, which were explored directly with local people using a questionnaire. Qualitative and quantitative analyses of the responses allowed for a better understanding of the perception and preparedness of populations exposed to flooding. These data should help to improve risk communication between the authorities concerned and the populations at risk, as well as encouraging implementation of appropriate measures and a bottom-up participatory management approach. The integration of data in a geographic information system enables the visualization and spatialization of risk, but also each of its components.
-
Snow avalanches are a major natural hazard for road users and infrastructure in northern Gaspesie. Over the past 11 years, the occurrence of nearly 500 snow avalanches on the two major roads servicing the area was reported. No management program is currently operational. In this study, we analyze the weather patterns promoting snow avalanche initiation and use logistic regression (LR) to calculate the probability of avalanche occurrence on a daily basis. We then test the best LR models over the 2012–2013 season in an operational forecasting perspective: Each day, the probability of occurrence (0–100%) determined by the model was classified into five classes avalanche danger scale. Our results show that avalanche occurrence along the coast is best predicted by 2 days of accrued snowfall [in water equivalent (WE)], daily rainfall, and wind speed. In the valley, the most significant predictive variables are 3 days of accrued snowfall (WE), daily rainfall, and the preceding 2 days of thermal amplitude. The large scree slopes located along the coast and exposed to strong winds tend to be more reactive to direct snow accumulation than the inner-valley slopes. Therefore, the probability of avalanche occurrence increases rapidly during a snowfall. The slopes located in the valley are less responsive to snow loading. The LR models developed prove to be an efficient tool to forecast days with high levels of snow avalanche activity. Finally, we discuss how road maintenance managers can use this forecasting tool to improve decision making and risk rendering on a daily basis.
-
In the context of global warming, changes in extreme weather and climate events are expected, particularly those associated with changes in temperature and precipitation regimes and those that will affect coastal areas. The main objectives of this study were to establish the number of extreme events that have occurred in northeastern New Brunswick, Canada in recent history, and to determine whether their occurrence has increased. By using archived regional newspapers and data from three meteorological stations in a national network, the frequency of extreme events in the study area was established for the time period 1950–2012. Of the 282 extreme weather events recorded in the newspaper archives, 70% were also identified in the meteorological time series analysis. The discrepancy might be explained by the synergistic effect of co-occurring non-extreme events, and increased vulnerability over time, resulting from more people and infrastructure being located in coastal hazard zones. The Mann Kendall and Pettitt statistical tests were used to identify trends and the presence of break points in the weather data time series. Results indicate a statistically significant increase in average temperatures and in the number of extreme events, such as extreme hot days, as well as an increase in total annual and extreme precipitation. A significant decrease in the number of frost-free days and extreme cold days was also found, in addition to a decline in the number of dry days.
-
ABSTRACTStatistical relationships between weather conditions and the release of snow avalanches in the low-elevation coastal valleys of the northern Gaspe Peninsula are still poorly validated. As s...
-
Due to limitations in traditional concrete gravity dam (CGD) design, a new approach is necessary. In this study, the lean analysis as a novel approach for CGD design, considering the interaction between dam and reservoir was considered. Maximum and minimum stresses at the heel and displacement of the crest were obtained as crucial input values of bubble sorting based on seismic analysis using Finite element analysis (FEA), and the Fuzzy Analytic Hierarchy Process (FAHP). The fuzzy bubble sorting analytic process, aimed at developing a novel method for selecting the best CGD configuration, was developed. Required Criteria, Sub-Criteria and developed models were applied to optimize the body of CGD. The weight of each sub-criterion and models were calculated based on pairwise comparison matrices. The novel approach was designed in MATLAB with the OPT-CGD code to select the best CGD model. The best weight of the Criteria, for selecting the best CGD model, based on the lean construction principles was selected from 60 developed models under implicit dynamic analysis. Statistical analysis reveals a 20% reduction in the concrete mass of the case study’s optimal body compared to the traditionally designed dam.
-
La province du Nouveau-Brunswick, situee dans l’est du Canada, est tres affectee par les inondations. Bien que moins documentee que l’alea, la dimension humaine du risque que represente la vulnerabilite est importante pour l’adaptation des populations. Cet article fait un survol des principaux concepts lies a la vulnerabilite et presente leur application a l’echelle d’un bassin versant de taille moyenne. Les resultats montrent la necessite de considerer simultanement la perception et la preparation au risque d’inondation. En effet, si certains residents dans les zones a risque ont une bonne connaissance des inondations et une perception realiste du risque, cela ne se traduit pas necessairement par une preparation adaptee et adequate face au risque. La reduction du risque passe indeniablement par une meilleure sensibilisation et education de la population.
-
Abstract Debris slide occurrence on treed slopes of northeastern North America is still poorly documented, despite their abundance and their potential to change mountainous landscapes in short periods of time. To provide new information on their spatiotemporal dynamics, a study was undertaken in debris slide paths in the Wildlife Reserve of Port-Cartier-Sept-Iles, on the Quebec North-Shore region of eastern Canada. Tree-ring dating of growth anomalies (impact scars and reaction wood) in nine debris slides allowed the identification of four debris slide events that occurred in 2003, 2006, 2008, and 2010. By comparison to other hillslope processes such as snow avalanches and debris flows, debris slides produce a very strong tree-ring signal. Therefore they do not require a large sample size considering also that they do not occur twice at the same place. The position of growth anomalies within individual tree rings allowed to determine the timing of the debris slide events: injuries located within a ring correspond to debris slides occurring during the growing season, whereas injuries located between the end of a ring and the beginning of the following ring were caused by debris slides occurring during the dormant season. The meteorological data indicate that a daily precipitation of 70mm appears usually sufficient for the occurrence of debris slides.
-
In the tropical environment such as Brazil, the frequency of rainfall-induced landslides is particularly high because of the rugged terrain, heavy rainfall, increasing urbanization, and the orographic effect of mountain ranges. Since such landslides repeatedly interfere with human activities and infrastructures, improved knowledge related to spatial and temporal prediction of the phenomenon is of interest for risk management. This study is an analysis of empirical rainfall thresholds, which aims to establish local and regional scale correlations between rainfall and the triggering of landslides in Angra dos Reis in the State of Rio de Janeiro. A statistical analysis combining quantile regression and binary logistic regression was performed on 1640 and 526 landslides triggered by daily rainfall over a 6-year period in the municipality and the urban center of Angra dos Reis, in order to establish probabilistic rainfall duration thresholds and assess the role of antecedent rainfall. The results show that the frequency of landslides is highly correlated with rainfall events, and surprisingly the thresholds in dry season are lower than those in wet season. The aspect of the slopes also seems to play an important role as demonstrated by the different thresholds between the southern and northern regions. Finally, the results presented in this study provide new insight into the spatial and temporal dynamics of landslides and rainfall conditions leading to their activation in this tropical and mountainous environment.