UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Fortin, Vincent"

Résultats 9 ressources

PertinenceRecently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Gagnon, P., Rousseau, A. N., Charron, D., Fortin, V., & Audet, R. (2017). The added value of stochastic spatial disaggregation for short-term rainfall forecasts currently available in Canada. Journal of Hydrology, 554. https://doi.org/10.1016/j.jhydrol.2017.08.023

    Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada’s (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Quebec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.

  • Cantet, P., Boucher, M.-A., Lachance-Coutier, S., Turcotte, R., & Fortin, V. (2019). Using a Particle Filter to Estimate the Spatial Distribution of the Snowpack Water Equivalent. Journal of Hydrometeorology, 20(4). https://doi.org/10.1175/jhm-d-18-0140.1

    AbstractA snow model forced by temperature and precipitation is used to simulate the spatial distribution of snow water equivalent (SWE) over a 600,000 km2 portion of the province of Quebec, Canada. We propose to improve model simulations by assimilating SWE data from sporadic manual snow surveys with a particle filter. A temporally and spatially correlated perturbation of the meteorological forcing is used to generate the set of particles. The magnitude of the perturbations is fixed objectively. First, the particle filter and direct insertion were both applied on 88 sites for which measured SWE consist of more or less five values per year over a period of 17 years. The temporal correlation of perturbations enables to improve the accuracy and the ensemble dispersion of the particle filter, while the spatial correlation lead to a spatial coherence in the particle weights. The spatial estimates of SWE obtained with the particle filter are compared with those obtained through optimal interpolation of the sno...

  • Fontaine, N., Boucher, M.-A., Anctil, F., Odry, J., Lachance-Cloutier, S., Fortin, V., & Turcotte, R. (2024). Combining large-scale and regional hydrological forecasts using simple methods. Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques, 49(2), 171–188. https://doi.org/10.1080/07011784.2023.2265893
    Consulter sur www.tandfonline.com
  • Alavi, N., Bélair, S., Fortin, V., Zhang, S., Husain, S. Z., Carrera, M. L., & Abrahamowicz, M. (2016). Warm Season Evaluation of Soil Moisture Prediction in the Soil, Vegetation, and Snow (SVS) Scheme. Journal of Hydrometeorology, 17(8). https://doi.org/10.1175/jhm-d-15-0189.1

    AbstractA new land surface scheme has been developed at Environment and Climate Change Canada (ECCC) to provide surface fluxes of momentum, heat, and moisture for the Global Environmental Multiscale (GEM) atmospheric model. In this study, the performance of the Soil, Vegetation, and Snow (SVS) scheme in estimating the surface and root-zone soil moisture is evaluated against the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme currently used operationally at ECCC within GEM for numerical weather prediction. In addition, the sensitivity of SVS soil moisture results to soil texture and vegetation data sources (type and fractional coverage) has been explored. The performance of SVS and ISBA was assessed against a large set of in situ observations as well as the brightness temperature data from the Soil Moisture Ocean Salinity (SMOS) satellite over North America. The results indicate that SVS estimates the time evolution of soil moisture more accurately, and compared to ISBA, results in highe...

  • Husain, S. Z., Alavi, N., Bélair, S., Carrera, M. L., Zhang, S., Fortin, V., Abrahamowicz, M., & Gauthier, N. (2016). The Multibudget Soil, Vegetation, and Snow (SVS) Scheme for Land Surface Parameterization: Offline Warm Season Evaluation. Journal of Hydrometeorology, 17(8). https://doi.org/10.1175/jhm-d-15-0228.1

    AbstractA new land surface parameterization scheme, named the Soil, Vegetation, and Snow (SVS) scheme, was recently developed at Environment and Climate Change Canada to replace the operationally used Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme. The new scheme is designed to address a number of weaknesses and limitations of ISBA that have been identified over the last decade. Unlike ISBA, which calculates a single energy budget for the different land surface components, SVS introduces a new tiling approach that includes separate energy budgets for bare ground, vegetation, and two different snowpacks (over bare ground and low vegetation and under high vegetation). The inclusion of a photosynthesis module as an option to determine the surface stomatal resistance is another significant addition in SVS. The representation of vertical water transport through soil has also been substantially improved in SVS with the introduction of multiple soil layers. Overall, offline simulations conduc...

  • Gasset, N., Fortin, V., Dimitrijevic, M., Carrera, M., Bilodeau, B., Muncaster, R., Gaborit, É., Roy, G., Pentcheva, N., Bulat, M., Wang, X., Pavlovic, R., Lespinas, F., & Khedhaouiria, D. (2021). A 10 km North American Precipitation and Land Surface Reanalysis Based on the GEM Atmospheric Model. Hydrometeorology/Modelling approaches. https://doi.org/10.5194/hess-2021-41

    Abstract. Environment and Climate Change Canada has initiated the production of a 1980–2018, 10 km, North American precipitation and surface reanalysis. ERA-Interim is used to initialize the Global Deterministic Reforecast System (GDRS) at a 39 km resolution. Its output is then dynamically downscaled to 10 km by the Regional Deterministic Reforecast System (RDRS). Coupled with the RDRS, the Canadian Land Data Assimilation System (CaLDAS) and Precipitation Analysis (CaPA) are used to produce surface and precipitation analyses. All systems used are close to operational model versions and configurations. In this study, a 7-year sample of the reanalysis (2011–2017) is evaluated. Verification results show that the skill of the RDRS is stable over time, and equivalent to that of the current operational system. The impact of the coupling between RDRS and CaLDAS is explored using an early version of the reanalysis system which was run at 15 km resolution for the period 2010–2014, with and without the use of CaLDAS. Significant improvements are observed with CaLDAS in the lower troposphere and surface layer, especially for the 850 hPa dew point and absolute temperatures in summer. Precipitation is further improved through an offline precipitation analysis which allows the assimilation of additional observations of 24-h precipitation totals. The final dataset should be of particular interest for hydrological applications focusing on trans-boundary and northern watersheds, where existing products often show discontinuities at the border and assimilate very few – if any – precipitation observations.

    Consulter sur hess.copernicus.org
  • Mai, J., Shen, H., Tolson, B. A., Gaborit, É., Arsenault, R., Craig, J. R., Fortin, V., Fry, L. M., Gauch, M., Klotz, D., Kratzert, F., O’Brien, N., Princz, D. G., Rasiya Koya, S., Roy, T., Seglenieks, F., Shrestha, N. K., Temgoua, A. G. T., Vionnet, V., & Waddell, J. W. (2022). The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL). Hydrology and Earth System Sciences, 26(13), 3537–3572. https://doi.org/10.5194/hess-26-3537-2022

    Abstract. Model intercomparison studies are carried out to test and compare the simulated outputs of various model setups over the same study domain. The Great Lakes region is such a domain of high public interest as it not only resembles a challenging region to model with its transboundary location, strong lake effects, and regions of strong human impact but is also one of the most densely populated areas in the USA and Canada. This study brought together a wide range of researchers setting up their models of choice in a highly standardized experimental setup using the same geophysical datasets, forcings, common routing product, and locations of performance evaluation across the 1×106 km2 study domain. The study comprises 13 models covering a wide range of model types from machine-learning-based, basin-wise, subbasin-based, and gridded models that are either locally or globally calibrated or calibrated for one of each of the six predefined regions of the watershed. Unlike most hydrologically focused model intercomparisons, this study not only compares models regarding their capability to simulate streamflow (Q) but also evaluates the quality of simulated actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE). The latter three outputs are compared against gridded reference datasets. The comparisons are performed in two ways – either by aggregating model outputs and the reference to basin level or by regridding all model outputs to the reference grid and comparing the model simulations at each grid-cell. The main results of this study are as follows: The comparison of models regarding streamflow reveals the superior quality of the machine-learning-based model in the performance of all experiments; even for the most challenging spatiotemporal validation, the machine learning (ML) model outperforms any other physically based model. While the locally calibrated models lead to good performance in calibration and temporal validation (even outperforming several regionally calibrated models), they lose performance when they are transferred to locations that the model has not been calibrated on. This is likely to be improved with more advanced strategies to transfer these models in space. The regionally calibrated models – while losing less performance in spatial and spatiotemporal validation than locally calibrated models – exhibit low performances in highly regulated and urban areas and agricultural regions in the USA. Comparisons of additional model outputs (AET, SSM, and SWE) against gridded reference datasets show that aggregating model outputs and the reference dataset to the basin scale can lead to different conclusions than a comparison at the native grid scale. The latter is deemed preferable, especially for variables with large spatial variability such as SWE. A multi-objective-based analysis of the model performances across all variables (Q, AET, SSM, and SWE) reveals overall well-performing locally calibrated models (i.e., HYMOD2-lumped) and regionally calibrated models (i.e., MESH-SVS-Raven and GEM-Hydro-Watroute) due to varying reasons. The machine-learning-based model was not included here as it is not set up to simulate AET, SSM, and SWE. All basin-aggregated model outputs and observations for the model variables evaluated in this study are available on an interactive website that enables users to visualize results and download the data and model outputs.

    Consulter sur hess.copernicus.org
  • Durnford, D., Fortin, V., Smith, G. C., Archambault, B., Deacu, D., Dupont, F., Dyck, S., Martinez, Y., Klyszejko, E., MacKay, M., Liu, L., Pellerin, P., Pietroniro, A., Roy, F., Vu, V.-D., Winter, B., Yu, W., Spence, C., Bruxer, J., & Dickhout, J. (2017). Toward an Operational Water Cycle Prediction System for the Great Lakes and St. Lawrence River. Bulletin of the American Meteorological Society, 99(3). https://doi.org/10.1175/bams-d-16-0155.1

    AbstractIn this time of a changing climate, it is important to know whether lake levels will rise, potentially causing flooding, or river flows will dry up during abnormally dry weather. The Great Lakes region is the largest freshwater lake system in the world. Moreover, agriculture, industry, commerce, and shipping are active in this densely populated region. Environment and Climate Change Canada (ECCC) recently implemented the Water Cycle Prediction System (WCPS) over the Great Lakes and St. Lawrence River watershed (WCPS-GLS version 1.0) following a decade of research and development. WCPS, a network of linked models, simulates the complete water cycle, following water as it moves from the atmosphere to the surface, through the river network and into lakes, and back to the atmosphere. Information concerning the water cycle is passed between the models. WCPS is the first short-to-medium-range prediction system of the complete water cycle to be run on an operational basis anywhere. It currently produces ...

  • Ritchie, H., Bélair, S., Bernier, N. B., Buehner, M., Charron, M., Fortin, V., Garand, L., Houtekamer, P., Husain, S. Z., Laroche, S., Lemieux, J.-F., Lin, H., McTaggart-Cowan, R., Milbrandt, J. A., Mitchell, H. L., Pellerin, P., Pudykiewicz, J., Separovic, L., Smith, G. C., … Vaillancourt, P. A. (2022). Recherche en Prévision Numérique Contributions to Numerical Weather Prediction. Atmosphere-Ocean. https://doi.org/10.1080/07055900.2022.2038071

    This is a review article invited by Atmosphere-Ocean to document the contributions of Recherche en Prévision Numérique (RPN) to Numerical Weather Prediction (NWP). It is structured as a historical review and documents RPN’s contributions to numerical methods, numerical modelling, data assimilation, and ensemble systems, with a look ahead to potential future systems. Through this review, we highlight the evolution of RPN’s contributions. We begin with early NWP efforts and continue through to environmental predictions with a broad range of applications. This synthesis is intended to be a helpful reference, consolidating developments and generating broader interest for future work on NWP in Canada.

RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-06-16 06 h 56 (UTC)

Explorer

Lieux

  • Canada (hors-Québec) (1)

Membres du RIISQ

  • Rousseau, Alain (1)

Type de ressource

  • Article de revue (8)
  • Rapport (1)

Année de publication

  • Entre 2000 et 2025 (9)
    • Entre 2010 et 2019 (5)
      • 2016 (2)
      • 2017 (2)
      • 2019 (1)
    • Entre 2020 et 2025 (4)
      • 2021 (1)
      • 2022 (2)
      • 2024 (1)

Langue de la ressource

  • Anglais (2)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web