Votre recherche
Résultats 2 ressources
-
Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada’s (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Quebec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.
-
AbstractA snow model forced by temperature and precipitation is used to simulate the spatial distribution of snow water equivalent (SWE) over a 600,000 km2 portion of the province of Quebec, Canada. We propose to improve model simulations by assimilating SWE data from sporadic manual snow surveys with a particle filter. A temporally and spatially correlated perturbation of the meteorological forcing is used to generate the set of particles. The magnitude of the perturbations is fixed objectively. First, the particle filter and direct insertion were both applied on 88 sites for which measured SWE consist of more or less five values per year over a period of 17 years. The temporal correlation of perturbations enables to improve the accuracy and the ensemble dispersion of the particle filter, while the spatial correlation lead to a spatial coherence in the particle weights. The spatial estimates of SWE obtained with the particle filter are compared with those obtained through optimal interpolation of the sno...