Votre recherche
Résultats 2 ressources
-
Abstract Confluences are sites of intense turbulent mixing in fluvial systems. The large‐scale turbulent structures largely responsible for this mixing have been proposed to fall into three main classes: vertically orientated (Kelvin–Helmholtz) vortices, secondary flow helical cells and smaller, strongly coherent streamwise‐orientated vortices. Little is known concerning the prevalence and causal mechanisms of each class, their interactions with one another and their respective contributions to mixing. Historically, mixing processes have largely been interpreted through statistical moments derived from sparse pointwise flow field and passive scalar transport measurements, causing the contribution of the instantaneous flow field to be largely overlooked. To overcome the limited spatiotemporal resolution of traditional methods, herein we analyse aerial video of large‐scale turbulent structures made visible by turbidity gradients present along the mixing interface of a mesoscale confluence and complement our findings with eddy‐resolved numerical modelling. The fast, shallow main channel (Mitis) separates over the crest of the scour hole's avalanche face prior to colliding with the slow, deep tributary (Neigette), resulting in a streamwise‐orientated separation cell in the lee of the avalanche face. Nascent large‐scale Kelvin–Helmholtz instabilities form along the collision zone and expand as the high‐momentum, separated near‐surface flow of the Mitis pushes into them. Simultaneously, the strong downwelling of the Mitis is accompanied by strong upwelling of the Neigette. The upwelling Neigette results in ∼50% of the Neigette's discharge crossing the mixing interface over the short collision zone. Helical cells were not observed at the confluence. However, the downwelling Mitis, upwelling Neigette and separation cell interact to generate considerable streamwise vorticity on the Mitis side of the mixing interface. This streamwise vorticity is strongly coupled to the large‐scale Kelvin–Helmholtz instabilities, which greatly enhances mixing. Comparably complex interactions between large‐scale Kelvin–Helmholtz instabilities and coherent streamwise vortices are expected at other typical asymmetric confluences exhibiting a pronounced scour hole.
-
Abstract Collecting data on the dynamic breakup of a river's ice cover is a notoriously difficult task. However, such data are necessary to reconstruct the events leading to the formation of ice jams and calibrate numerical ice jam models. Photogrammetry using images from remotely piloted aircraft (RPA) is a cost-effective and rapid technique to produce large-scale orthomosaics and digital elevation maps (DEMs) of an ice jam. Herein, we apply RPA photogrammetry to document an ice jam that formed on a river in southern Quebec in the winter of 2022. Composite orthomosaics of the 2-km ice jam provided evidence of overbanking flow, hinge cracks near the banks and lengthy longitudinal stress cracks in the ice jam caused by sagging as the flow abated. DEMs helped identify zones where the ice rubble was grounded to the bed, thus allowing ice jam thickness estimates to be made in these locations. The datasets were then used to calibrate a one-dimensional numerical model of the ice jam. The model will be used in subsequent work to assess the risk of ice interacting with the superstructure of a low-level bridge in the reach and assess the likelihood of ice jam flooding of nearby residences.