Votre recherche
Résultats 3 ressources
-
An integrated framework was employed to develop probabilistic floodplain maps, taking into account hydrologic and hydraulic uncertainties under climate change impacts. To develop the maps, several scenarios representing the individual and compounding effects of the models’ input and parameters uncertainty were defined. Hydrologic model calibration and validation were performed using a Dynamically Dimensioned Search algorithm. A generalized likelihood uncertainty estimation method was used for quantifying uncertainty. To draw on the potential benefits of the proposed methodology, a flash-flood-prone urban watershed in the Greater Toronto Area, Canada, was selected. The developed floodplain maps were updated considering climate change impacts on the input uncertainty with rainfall Intensity–Duration–Frequency (IDF) projections of RCP8.5. The results indicated that the hydrologic model input poses the most uncertainty to floodplain delineation. Incorporating climate change impacts resulted in the expansion of the potential flood area and an increase in water depth. Comparison between stationary and non-stationary IDFs showed that the flood probability is higher when a non-stationary approach is used. The large inevitable uncertainty associated with floodplain mapping and increased future flood risk under climate change imply a great need for enhanced flood modeling techniques and tools. The probabilistic floodplain maps are beneficial for implementing risk management strategies and land-use planning.
-
In Canada, floods are the most common largely distributed hazard to life, property, the economy, water systems, and the environment costing the Canadian economy billions of dollars. Arising from this is FloodNet: a transdisciplinary strategic research network funded by Canadas Natural Sciences and Engineering Research Council, as a vehicle for a concerted nation-wide effort to improve flood forecasting and to better assess risk and manage the environmental and socio-economic consequences of floods. Four themes were explored in this network which include 1) Flood regimes in Canada; 2) Uncertainty of floods; 3) Development of a flood forecasting and early warning system and 4) Physical, socio-economic and environmental effects of floods. Over the years a range of statistical, hydrologic, modeling, and economic and psychometric analyses were used across the themes. FloodNet has made significant progress in: assessing spatial and temporal variation of extreme events; updating intensity-duration-frequency (IDF) curves; improving streamflow forecasting using novel techniques; development and testing of a Canadian adaptive flood forecasting and early warning system (CAFFEWS); a better understanding of flood impacts and risk. Despite these advancements FloodNet ends at a time when the World is still grappling with severe floods (e.g., Europe, China, Africa) and we report on several lessons learned. Mitigating the impact of flood hazards in Canada remains a challenging task due to the countrys varied geography, environment, and jurisdictional political boundaries. Canadian technical guide for developing IDF relations for infrastructure design in the climate change context has been recently updated. However, national guidelines for flood frequency analyses are needed since across the country there is not a unified approach to flood forecasting as each jurisdiction uses individual models and procedures. From the perspective of risk and vulnerability, there remains great need to better understand the direct and indirect impacts of floods on society, the economy and the environment.