Votre recherche
Résultats 6 ressources
-
Data include flood ring (F1, F2) and earlywood vessel chronologies (MVA, N) derived from black ash (Fraxinus nigra Marsh.) trees growing in eastern boreal Canada near Lake Duparquet (Quebec) reported in "Spatial coherence of the spring flood signal among major river basins of eastern boreal Canada inferred from flood rings" published in "Journal of Hydrology" by Nolin et al. in 2021. F1_F2_chrono.csv, as in Figure 3, the F1 and F2 flood-ring chronologies per sites (sites are coded as in Table 1) with sample replication (n); LAT_LON.kml, the coordinate data for each site and sampled tree; MVA_N_chrono.csv, as in Figure 5, the MVA and N chronologies per river basins (river basins are coded as in Table 1); REC1.csv, the reconstruction of the Harricana River spring discharge from 1771 to 2016 reported in "Multi-century tree-ring anatomical evidence reveals increasing frequency and magnitude of spring discharge and floods in eastern boreal Canada" published in "Global and Planetary Change" by Nolin et al. 2021. metadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
In northeastern boreal Canada, the long-term perspective on spring flooding is hampered by the absence of long gage records. Changes in the tree-ring anatomy of periodically flooded trees have allowed the reconstruction of historical floods in unregulated hydrological systems. In regulated rivers, the study of flood rings could recover past flood history, assuming that the effects of hydrological regulation on their production can be understood. This study analyzes the effect of regulation on the flood-ring occurrence (visual intensity and relative frequency) and on ring widths in Fraxinus nigra trees growing at five sites distributed along the Driftwood River floodplain. Driftwood River was regulated by a dam in 1917 that was replaced at the same location in 1953. Ring width revealed little, to no evidence, of the impact of river regulation, in contrast to the flood rings. Prior to 1917, high relative frequencies of well-defined flood rings were recorded during known flood years, as indicated by significant correlations with reconstructed spring discharge of the nearby Harricana River. After the construction and the replacement of the dam, relative frequencies of flood rings and their intensities gradually decreased. Flood-ring relative frequencies after 1917, and particularly after 1953, were mostly composed of weakly defined (less distinct) flood rings with some corresponding to known flood years and others likely reflecting dam management. The strength of the correlations with the instrumental Harricana River discharge also gradually decrease starting after 1917. Compared with upper floodplain trees, shoreline trees at each site recorded flood rings less frequently following the construction of the first but especially of the second dam, indicating that water level regulation limited flooding in the floodplains. Compared with the downstream site to the dam, the upstream ones recorded significantly more flood rings in the postdam period, reemphasizing the importance of considering the position of the site along with the river continuum and site conditions in relation to flood exposure. The results demonstrated that sampling trees in multiple riparian stands and along with various hydrological contexts at a far distance of the dams could help disentangle the flooding signal from the dam management signal.
-
Data include tree-ring widths and wood anatomical chronologies of Pinus banksiana and Fraxinus nigra trees growing in eastern boreal Canada, as well as the reconstructed spring mean temperature, reported in "A 247-years tree-ring reconstruction of spring temperature and relation to spring flooding in eastern boreal Canada" published in "International journal of Climatology" by Nolin et al., 2021. PIBA_FRNI_Chronos.csv, the tree-ring widths and wood anatomical chronologies (1706-2017) used in this study (species and sites are coded as in Table 1); PIBA_FRNI_SampDepth.csv, the annual replication of samples used to produce each chronologies (1706-2017); PIBA_FRNI_RecSpringTemp.csv, the reconstructed mean spring temperature (1770 to 2016) LAT_LON_SpringTemp.kml, the coordinate data for each sampling site: metadatas.txt, a set of self-explanatory instructions and descriptions for data files. All other data are available upon request to the corresponding author at alexandreflorent.nolin@uqat.ca (institutional email), alexandreflorent.nolin@gmail.com (permanent email).
-
Abstract Few records of spring paleoclimate are available for boreal Canada, as biological proxies recording the beginning of the warm season are uncommon. Given the spring warming observed during the last decades, and its impact on snowmelt and hydrological processes, searching for spring climate proxies is receiving increasing attention. Tree‐ring anatomical features and intra‐annual widths were used to reconstruct the regional March to May mean air temperature from 1770 to 2016 in eastern boreal Canada. Nested principal component regressions calibrated on 116 years of gridded temperature data were developed from one Fraxinus nigra and 10 Pinus banksiana sites. The reconstruction indicated three distinct phases in spring temperature variability since 1770. Ample phases of multi‐decadal warm and cold springs persisted until the end of the Little Ice Age (1850–1870 CE) and were gradually replaced since the 1940s by decadal to interannual variability associated with an increase in the frequency and magnitude of warm springs. Significant correlations with other paleotemperature records, gridded snow cover extent and runoff support that historical high flooding were associated with late, cold springs with heavy snow cover. Most of the high magnitude spring floods reconstructed for the nearby Harricana River also coincided with the lowest reconstructed spring temperature per decade. However, the last 40 years of observed and reconstructed mean spring temperature showed a reduction in the number of extreme cold springs contrasting with the last few decades of extreme flooding in the eastern Canadian boreal region. This result indicates that warmer late spring mean temperatures on average may contribute, among other factors, to advance the spring break‐up and to likely shift the contribution of snow to rain in spring flooding processes.