Votre recherche
Résultats 12 ressources
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
-
In Canada, flooding is the most common and costly natural hazard. Flooding events significantly impact communities, damage infrastructures and threaten public security. Communication, as part of a flood risk management strategy, is an essential means of countering these threats. It is therefore important to develop new and innovative tools to communicate the flood risk with citizens. From this perspective, the use of story maps can be very effectively implemented for a broad audience, particularly to stakeholders. This paper details how an interactive web-based story map was set up to communicate current and future flood risks in the Petite-Nation River watershed, Quebec (Canada). This web technology application combines informative texts and interactive maps on current and future flood risks in the Petite-Nation River watershed. Flood risk and climate maps were generated using the GARI tool, implemented using a geographic information system (GIS) supported by ArcGIS Online (Esri). Three climate change scenarios developed by the Hydroclimatic Atlas of Southern Quebec were used to visualize potential future impacts. This study concluded that our story map is an efficient flood hazard communication tool. The assets of this interactive web mapping tool are numerous, namely user-friendly mapping, use and interaction, and customizable displays.
-
The study addresses the need for flood risk anticipation and planning, through the development of a flood zone mapping approach for different return periods, in order to best prevent and protect populations. Today, traditional methods are too costly, too slow or require too many requirements to be applied over large areas. As part of a project funded by the Canadian Space Agency, Geosapiens and the Institut National de la Recherche Scientifique set themselves the goal of designing an automatic process to generate water presence maps for different return periods at a resolution of 30 m, based on the historical database of Landsat missions from 1982 to the present day. This involved the design, implementation and training of a deep learning algorithm model based on the U-Net architecture for the detection of water pixels in Landsat imagery. The resulting maps were used as the basis for applying a frequency analysis model to fit a probability of occurrence function for the presence of water at each pixel. The frequency analysis data were then used to obtain maps of water occurrence at different return preiods such as 2, 5 and 20 years.
-
Abstract. Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec) were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases). Results, limitations, and potential improvements are discussed.
-
In recent years, understanding and improving the perception of flood risk has become an important aspect of flood risk management and flood risk reduction policies. The aim of this study was to explore perceptions of flood risk in the Petite Nation River watershed, located in southern Quebec, Canada. A survey was conducted with 130 residents living on a floodplain in this river watershed, which had been affected by floods in the spring of 2017. Participants were asked about different aspects related to flood risk, such as the flood hazard experience, the physical changes occurring in the environment, climate change, information accessibility, flood risk governance, adaptation measures, and finally the perception of losses. An analysis of these factors provided perspectives for improving flood risk communication and increasing the public awareness of flood risk. The results indicated that the analyzed aspects are potentially important in terms of risk perception and showed that the flood risk perceptions varied for each aspect analyzed. In general, the information regarding flood risk management is available and generally understandable, and the level of confidence was good towards most authorities. However, the experiences of flood risk and the consequences of climate change on floods were not clear among the respondents. Regarding the adaptation measures, the majority of participants tended to consider non-structural adaptation measures as being more relevant than structural ones. Moreover, the long-term consequences of flooding on property values are of highest concern. These results provide a snapshot of citizens’ risk perceptions and their opinions on topics that are directly related to such risks.
-
Abstract Characterizing and identification of flood‐susceptible areas can be a solution to mitigate the damages and fatality rate. This study proposes a novel hybrid MCDM framework to assess flood susceptibility in large ungauged watersheds dealing with data scarcity issues. The proposed method examines the interdependencies and causal relationships between various criteria affecting the flooding procedure using the DEcision‐MAking Trial and Evaluation Laboratory (DEMATEL). Moreover, since experts' opinions contain uncertainty, the fuzzy logic is integrated with DEMATEL to overcome this shortcoming. Then, the local weights of criteria were estimated using the Best–Worst Method (BWM) to enhance the pairwise comparisons process. Final criteria weights were obtained using Fuzzy DEMATEL and BWM results in Analytical Network Process (ANP) super‐matrix. Finally, the criteria were distributed spatially using the Complex Proportional Assessment of Alternatives (COPRAS) method based on obtained weights. The proposed method was compared with different approaches such as Fuzzy‐DEMATEL ANP, BWM, and AHP using several statistical measures. We concluded that the novel hybrid proposed method outperformed other approaches based on our results. Moreover, by overlaying classified maps with the historical flood events locations, it was concluded that 85.96% of flooded areas were classified as “high” and “very high.”
-
In cold regions, ice jams frequently result in severe flooding due to a rapid rise in water levels upstream of the jam. Sudden floods resulting from ice jams threaten human safety and cause damage to properties and infrastructure. Hence, ice-jam prediction tools can give an early warning to increase response time and minimize the possible damages. However, ice-jam prediction has always been a challenge as there is no analytical method available for this purpose. Nonetheless, ice jams form when some hydro-meteorological conditions happen, a few hours to a few days before the event. Ice-jam prediction can be addressed as a binary multivariate time-series classification. Deep learning techniques have been widely used for time-series classification in many fields such as finance, engineering, weather forecasting, and medicine. In this research, we successfully applied convolutional neural networks (CNN), long short-term memory (LSTM), and combined convolutional–long short-term memory (CNN-LSTM) networks to predict the formation of ice jams in 150 rivers in the province of Quebec (Canada). We also employed machine learning methods including support vector machine (SVM), k-nearest neighbors classifier (KNN), decision tree, and multilayer perceptron (MLP) for this purpose. The hydro-meteorological variables (e.g., temperature, precipitation, and snow depth) along with the corresponding jam or no-jam events are used as model inputs. Ten percent of the data were excluded from the model and set aside for testing, and 100 reshuffling and splitting iterations were applied to 80 % of the remaining data for training and 20 % for validation. The developed deep learning models achieved improvements in performance in comparison to the developed machine learning models. The results show that the CNN-LSTM model yields the best results in the validation and testing with F1 scores of 0.82 and 0.92, respectively. This demonstrates that CNN and LSTM models are complementary, and a combination of both further improves classification.
-
In Canada, climate change is expected to increase the extreme precipitation events by magnitude and frequency, leading to more intense and frequent river flooding. In this study, we attempt to map the flood hazard and damage under projected climate scenarios (2050 and 2080). The study was performed in the two most populated municipalities of the Petite Nation River Watershed, located in southern Quebec (Canada). The methodology follows a modelling approach, in which climate projections are derived from the Hydroclimatic Atlas of Southern Quebec following two representative concentration pathways (RCPs) scenarios, i.e., RCP 4.5 and RCP 8.5. These projections are used to predict future river flows. A frequency analysis was carried out with historical data of the peak flow (period 1969–2018) to derive different return periods (2, 20, and 100 years), which were then fed into the GARI tool (Gestion et Analyse du Risque d’Inondation). This tool is used to simulate flood hazard maps and to quantify future flood risk changes. Projected flood hazard (extent and depth) and damage maps were produced for the two municipalities under current and for future scenarios. The results indicate that the flood frequencies are expected to show a minor decrease in peak flows in the basin at the time horizons, 2050 and 2080. In addition, the depth and inundation areas will not significantly change for two time horizons, but instead show a minor decrease. Similarly, the projected flood damage changes in monetary losses are projected to decrease in the future. The results of this study allow one to identify present and future flood hazards and vulnerabilities, and should help decision-makers and the public to better understand the significance of climate change on flood risk in the Petite Nation River watershed.
-
Floods are the most common natural hazard worldwide. GARI is a flood risk management and analysis tool that is being developed by the Environmental and Nordic Remote Sensing Group (TENOR) of INRS in Quebec City (Canada). Beyond mapping the flooded areas and water levels, GARI allows for the estimation, analysis and visualization of flood risks for individuals, residential buildings, and population. Information can therefore be used during the different phases of flood risk management. In the operational phase, GARI can use satellite radar images to map in near real-time the flooded areas and water levels. It uses an innovative approach that combines Radarsat-2 and hydraulic data, specifically flood return period data. Information from the GARI enable municipalities and individuals to anticipate the impacts of a flood in a given area, to mitigate these impacts, to prepare, and to better coordinate their actions during a flood.
-
A new method for sensitivity analysis of water depths is presented based on a two-dimensional hydraulic model as a convenient and cost-effective alternative to Monte Carlo simulations. The method involves perturbation of the probability distribution of input variables. A relative sensitivity index is calculated for each variable, using the Gauss quadrature sampling, thus limiting the number of runs of the hydraulic model. The variable-related highest variation of the expected water depths is considered to be the most influential. The proposed method proved particularly efficient, requiring less information to describe model inputs and fewer model executions to calculate the sensitivity index. It was tested over a 45 km long reach of the Richelieu River, Canada. A 2D hydraulic model was used to solve the shallow water equations (SWE). Three input variables were considered: Flow rate, Manning’s coefficient, and topography of a shoal within the considered reach. Four flow scenarios were simulated with discharge rates of 759, 824, 936, and 1113 m 3 / s . The results show that the predicted water depths were most sensitive to the topography of the shoal, whereas the sensitivity indices of Manning’s coefficient and the flow rate were comparatively lower. These results are important for making better hydraulic models, taking into account the sensitivity analysis.