Votre recherche
Résultats 3 ressources
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
-
The study addresses the need for flood risk anticipation and planning, through the development of a flood zone mapping approach for different return periods, in order to best prevent and protect populations. Today, traditional methods are too costly, too slow or require too many requirements to be applied over large areas. As part of a project funded by the Canadian Space Agency, Geosapiens and the Institut National de la Recherche Scientifique set themselves the goal of designing an automatic process to generate water presence maps for different return periods at a resolution of 30 m, based on the historical database of Landsat missions from 1982 to the present day. This involved the design, implementation and training of a deep learning algorithm model based on the U-Net architecture for the detection of water pixels in Landsat imagery. The resulting maps were used as the basis for applying a frequency analysis model to fit a probability of occurrence function for the presence of water at each pixel. The frequency analysis data were then used to obtain maps of water occurrence at different return preiods such as 2, 5 and 20 years.