Votre recherche
Résultats 3 ressources
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies
-
Abstract Characterizing and identification of flood‐susceptible areas can be a solution to mitigate the damages and fatality rate. This study proposes a novel hybrid MCDM framework to assess flood susceptibility in large ungauged watersheds dealing with data scarcity issues. The proposed method examines the interdependencies and causal relationships between various criteria affecting the flooding procedure using the DEcision‐MAking Trial and Evaluation Laboratory (DEMATEL). Moreover, since experts' opinions contain uncertainty, the fuzzy logic is integrated with DEMATEL to overcome this shortcoming. Then, the local weights of criteria were estimated using the Best–Worst Method (BWM) to enhance the pairwise comparisons process. Final criteria weights were obtained using Fuzzy DEMATEL and BWM results in Analytical Network Process (ANP) super‐matrix. Finally, the criteria were distributed spatially using the Complex Proportional Assessment of Alternatives (COPRAS) method based on obtained weights. The proposed method was compared with different approaches such as Fuzzy‐DEMATEL ANP, BWM, and AHP using several statistical measures. We concluded that the novel hybrid proposed method outperformed other approaches based on our results. Moreover, by overlaying classified maps with the historical flood events locations, it was concluded that 85.96% of flooded areas were classified as “high” and “very high.”
-
Floods are the most common natural hazard worldwide. GARI is a flood risk management and analysis tool that is being developed by the Environmental and Nordic Remote Sensing Group (TENOR) of INRS in Quebec City (Canada). Beyond mapping the flooded areas and water levels, GARI allows for the estimation, analysis and visualization of flood risks for individuals, residential buildings, and population. Information can therefore be used during the different phases of flood risk management. In the operational phase, GARI can use satellite radar images to map in near real-time the flooded areas and water levels. It uses an innovative approach that combines Radarsat-2 and hydraulic data, specifically flood return period data. Information from the GARI enable municipalities and individuals to anticipate the impacts of a flood in a given area, to mitigate these impacts, to prepare, and to better coordinate their actions during a flood.