Votre recherche
Résultats 2 ressources
-
Abstract The impacts of climatic disasters have been rising globally. Several studies argue that this upward trend is due to rapid growth in the population and wealth exposed to disasters. Others argue that rising extreme weather events due to anthropogenic climate change are responsible for the increase. Hence, the causes of the increase in disaster impacts remain elusive. Disaster impacts relative to income are higher in low-income countries, but existing studies are mostly from developed countries or at the cross-country level. Here we assess the spatiotemporal trends of climatic disaster impacts and vulnerability and their attribution to climatic and socioeconomic factors at the subnational scale in a low-income country, using Nepal as a case study. Loss of life is the most extreme consequence of disasters. Therefore, we employed human mortality as a measure of disaster impacts, and mortality normalized by exposed population as a measure of human vulnerability. We found that climatic disaster frequency and mortality increased in Nepal from 1992 to 2021. However, vulnerability decreased, most likely due to economic growth and progress in disaster risk reduction and climate change adaptation. Disaster mortality is positively correlated with disaster frequency and negatively correlated with per capita income but is not correlated with the exposed population. Hence, population growth may not have caused the rise in disaster mortality in Nepal. The strong rise in disaster incidence, potentially due to climate change, has overcome the effect of decreasing vulnerability and caused the rise in disaster mortality.
-
Abstract Climatic disaster impacts, such as loss of human life as its most severe consequence, have been rising globally. Several studies argue that population growth is responsible for the rise, and the role of climate change is not evident. While disaster mortality is highest in low-income countries, existing studies focus mostly on developed countries. Here we address this impact attribution question in the context of the Global South using disaster-specific mixed-effects regression models. We show that the rise in landslide and flood mortality in a low-income country such as Nepal between 1992-2021 is primarily attributable to increased precipitation extremes. An increase in one standardized unit in maximum one-day precipitation increases flood mortality by 33%, and heavy rain days increase landslide mortality by 45%. Similarly, a one-unit increase in per capita income decreases landslide and flood mortality by 30% and 45%, respectively. Population density does not show significant effects.