Votre recherche
Résultats 5 ressources
-
This study aims to evaluate the effects of the Canadian Regional Climate Model’s (CRCM) spatial resolution on summer-fall floods simulation. Seven different climate simulations issued from the fourth and the fifth version of the CRCM are employed. Four different climate simulations issued from the fourth version of the CRCM (CRCM4) are compared. They are composed of two simulations driven by the Canadian General Circulation Model (CGCM) and two driven by the ERA-40c reanalysis using grid meshes of 15 km and 45 km resolutions for each driver. Three climate simulations issued from the fifth version of the CRCM (CRCM5) driven by the ERA-Interim at 0.44° (≈ 48 km), 0.22° (≈ 24 km) and 0.11° (≈ 12 km) spatial resolutions are used. All comparisons are evaluated on a daily time-step for the 1961-1990 period (for CRCM4) and for the 1981-2010 period (for CRCM5). These seven simulations (four from CRCM4 and three from CRCM5) are used as input for two hydrological models of varying complexity (HSAMI and MOHYSE). Each model is calibrated using three different objective functions based on the Kling-Gupta Efficiency criteria (KGE) to target the summer-fall floods. Three seasonal indices are used to evaluate the CRCM outputs: bias (temperature), relative bias (precipitation) and variances ratio (temperature and precipitation). In an attempt to evaluate the effects of the spatial resolution on the hydrological modelling of summer-fall floods, streamflow simulations are generated using the seven climate datasets. The generated climate-driven streamflow simulations are analysed by two performance statistics: the seasonal values of KGE and the seasonal relative biases. Summer-fall floods are evaluated through the use of four flood indicators, the 2-year, 5-year, 10-year and 20-year return periods. The results revealed an impact of spatial resolution on climate model outputs (temperature and precipitation) and on summer-fall floods simulation by the two hydrological models and the three different calibration approaches, although this can be due to other elements such as domain size and climate model driver. The flood indicators demonstrate an increase on the summer-fall floods return periods with increasing resolution from both hydrological models. On the other hand the hydrological models structure and the calibration approaches did not show significant impacts on the summer-fall floods. The results highlight the need for further research to assess the additional uncertainty due to the impacts of the climate simulations spatial resolution on hydrological studies.
-
Extreme flood events continue to be one of the most threatening natural disasters around the world due to their pronounced social, environmental and economic impacts. Changes in the magnitude and frequency of floods have been documented during the last years, and it is expected that a changing climate will continue to affect their occurrence. Therefore, understanding the impacts of climate change through hydroclimatic simulations has become essential to prepare adaptation strategies for the future. However, the confidence in flood projections is still low due to the considerable uncertainties associated with their simulations, and the complexity of local features influencing these events. The main objective of this doctoral thesis is thus to improve our understanding of the modelling uncertainties associated with the generation of flood projections as well as evaluating strategies to reduce these uncertainties to increase our confidence in flood simulations. To address the main objective, this project aimed at (1) quantifying the uncertainty contributions of different elements involved in the modelling chain used to produce flood projections and, (2) evaluating the effects of different strategies to reduce the uncertainties associated with climate and hydrological models in regions with diverse hydroclimatic conditions. A total of 96 basins located in Quebec (basins dominated by snow-related processes) and Mexico (basins dominated by rain-related processes), covering a wide range of climatic and hydrological regimes were included in the study. The first stage consisted in decomposing the uncertainty contributions of four main uncertainty sources involved in the generation of flood projections: (1) climate models, (2) post-processing methods, (3) hydrological models, and (4) probability distributions used in flood frequency analyses. A variance decomposition method allowed quantifying and ranking the influence of each uncertainty source on floods over the two regions studied and by seasons. The results showed that the uncertainty contributions of each source vary over the different regions and seasons. Regions and seasons dominated by rain showed climate models as the main uncertainty source, while those dominated by snowmelt showed hydrological models as the main uncertainty contributor. These findings not only show the dangers of relying on single climate and hydrological models, but also underline the importance of regional uncertainty analyses. The second stage of this research project focused in evaluating strategies to reduce the uncertainties arising from hydrological models on flood projections. This stage includes two steps: (1) the analysis of the reliability of hydrological model’s calibration under a changing climate and (2) the evaluation of the effects of weighting hydrological simulations on flood projections. To address the first part, different calibration strategies were tested and evaluated using five conceptual lumped hydrological models under contrasting climate conditions with datasets lengths varying from 2 up to 21 years. The results revealed that the climatic conditions of the calibration data have larger impacts on hydrological model’s performance than the lengths of the climate time series. Moreover, changes on precipitation generally showed greater impacts than changes in temperature across all the different basins. These results suggest that shorter calibration and validation periods that are more representative of possible changes in climatic conditions could be more appropriate for climate change impact studies. Following these findings, the effects of different weighting strategies based on the robustness of hydrological models (in contrasting climatic conditions) were assessed on flood projections of the different studied basins. Weighting the five hydrological models based on their robustness showed some improvements over the traditional equal-weighting approach, particularly over warmer and drier conditions. Moreover, the results showed that the difference between these approaches was more pronounced over flood projections, as contrasting flood magnitudes and climate change signals were observed between both approaches. Additional analyses performed over four selected basins using a semi-distributed and more physically-based hydrological model suggested that this type of models might have an added value when simulating low-flows, and high flows on small basins (of about 500 km2). These results highlight once again the importance of working with ensembles of hydrological models and presents the potential impacts of weighting hydrological models on climate change impact studies. The final stage of this study focused on evaluating the impacts of weighting climate simulations on flood projections. The different weighting strategies tested showed that weighting climate simulations can improve the mean hydrograph representation compared to the traditional model “democracy” approach. This improvement was mainly observed with a weighting approach proposed in this thesis that evaluates the skill of the seasonal simulated streamflow against observations. The results also revealed that weighting climate simulations based on their performance can: (1) impact the floods magnitudes, (2) impact the climate change signals, and (3) reduce the uncertainty spreads of the resulting flood projection. These effects were particularly clear over rain-dominated basins, where climate modelling uncertainty plays a main role. These finding emphasize the need to reconsider the traditional climate model democracy approach, especially when studying processes with higher levels of climatic uncertainty. Finally, the implications of the obtained results were discussed. This section puts the main findings into perspective and identifies different ways forward to keep improving the understanding of climate change impacts in hydrology and increasing our confidence on flood projections that are essential to guide adaptation strategies for the future.
-
The potential impacts of floods are of significant concern to our modern society raising the need to identify and quantify all the uncertainties that can impact their simulations. Climate simulations at finer spatial resolutions are expected to bring more confidence in these hydrological simulations. However, the impact of the increasing spatial resolutions of climate simulations on floods simulations has to be evaluated. To address this issue, this paper assesses the sensitivity of summer–fall flood simulations to the Canadian Regional Climate Model (CRCM) grid resolution. Three climate simulations issued from the fifth version of the CRCM (CRCM5) driven by the ERA-Interim reanalysis at 0.44°, 0.22° and 0.11° resolutions are analysed at a daily time step for the 1981–2010 period. Raw CRCM5 precipitation and temperature outputs are used as inputs in the simple lumped conceptual hydrological model MOHYSE to simulate streamflows over 50 Quebec (Canada) basins. Summer–fall flooding is analysed by estimating four flood indicators: the 2-year, 5-year, 10-year and 20-year return periods from the CRCM5-driven streamflows. The results show systematic impacts of spatial resolution on CRCM5 outputs and seasonal flood simulations. Floods simulated with coarser climate datasets present smaller peak discharges than those simulated with the finer climate outputs. Smaller catchments show larger sensitivity to spatial resolution as more detail can be obtained from the finer grids. Overall, this work contributes to understanding the sensitivity of streamflow modelling to the climate model’s resolution, highlighting yet another uncertainty source to consider in hydrological climate change impact studies.