Votre recherche
Résultats 7 ressources
-
Abstract Large wood (LW) is a ubiquitous feature in rivers of forested watersheds worldwide, and its importance for river diversity has been recognized for several decades. Although the role of LW in fluvial dynamics has been extensively documented, there is a need to better quantify the most significant components of LW budgets at the river scale. The purpose of our study was to quantify each component (input, accumulation, and output) of a LW budget at the reach and watershed scales for different time periods (i.e. a 50‐year period, decadal cycle, and interannual cycle). The LW budget was quantified by measuring the volumes of LW inputs, accumulations, and outputs within river sections that were finally evacuated from the watershed. The study site included three unusually large but natural wood rafts in the delta of the Saint‐Jean River (SJR; Québec, Canada) that have accumulated all LW exported from the watershed for the last 50 years. We observed an increase in fluvial dynamics since 2004, which led to larger LW recruitment and a greater LW volume trapped in the river corridor, suggesting that the system is not in equilibrium in terms of the wood budget but is rather recovering from previous human pressures as well as adjusting to hydroclimatic changes. The results reveal the large variability in the LW budget dynamics during the 50‐year period and allow us to examine the eco‐hydromorphological trajectory that highlights key variables (discharge, erosion rates, bar surface area, sinuosity, wood mobility, and wood retention). Knowledge on the dynamics of these variables improves our understanding of the historical and future trajectories of LW dynamics and fluvial dynamics in gravel‐bed rivers. Extreme events (flood and ice‐melt) significantly contribute to LW dynamics in the SJR river system. Copyright © 2017 John Wiley & Sons, Ltd.
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
-
In agricultural watersheds, human interventions such as channel straightening have disrupted the hydrologic connectivity between headwater streams and their riparian environment and have thus undermined the ecological services provided by these small streams. Knowledge of the hydrologic connectivity between these streams and their immediate environment (shallow riparian groundwater in the historical floodplain and on adjacent hillslopes) in human-impacted settings is critical for understanding and restoring these hydrological systems but remains largely incomplete. The objective of this research is to investigate the hydrogeomorphological conditions controlling hydrologic connectivity in the historical floodplain of straightened lowland streams. Detailed measurements on the spatiotemporal variability of groundwater-surface water interactions between straightened reaches, historical floodplain including abandoned meanders, and the adjacent hillslopes were obtained using a dense network of piezometers at two sites in the St. Lawrence Lowlands (Quebec, Canada). Results show that the complex mechanisms controlling hydrologic connectivity in naturally meandering lowland rivers also operate in highly disturbed straightened reaches, despite backfilling and agricultural practices. The pre-straightening hydrogeomorphological configuration of the floodplain partly explains the complex patterns of piezometric fluctuations observed at the sites. The apex of the abandoned meanders stands out as a focal area of hydrologic connectivity as water levels indicate pressure transfer that may reflect flows from the stream, the hillslopes, and the surrounding historical floodplain. These unique field observations suggest that abandoned meanders should be promoted as key elements of restoration strategies in lowland agricultural straightened headwater streams.
-
Abstract The consensus around the need for a shift in river management approaches to include more natural processes is steadily growing amongst scientists, practitioners, and governmental agencies. The freedom space for rivers concept promotes the delineation of a single space that integrates multiple fluvial dynamics such as floods, lateral migration, channel avulsions, and riparian wetlands connectivity. The objective of this research is to assess the validity of the hydrogeomorphological approach to delineate the freedom space for an extensive sampling of river reaches, covering 167 km, in contrasting watersheds in Quebec (Canada). Comparative analysis was conducted on the relative importance of erosion and flood processes on the freedom space delineation for various fluvial types. Semiautomated tools based on light detection and ranging (LiDAR) digital elevation models were also tested on an additional 274 km of watercourses to facilitate freedom space mapping over extensive zones and for highly dynamics environments such as alluvial fans. In the studied reaches, flood and erosion processes occur respectively, on average, in a space equivalent to 2.6 and 20.6 channel widths. In unconfined landscapes, flood processes represent an area up to almost four times the area of erosion processes expected in a 50‐year period. In partly confined and confined environments, erosion processes are more likely to exceed flooding zone, and therefore need to be integrated in the mapping. This study helps better determine the conditions for which the full methodology of freedom space mapping is required or where semiautomated methods can be used. It provides useful guidelines for the implementation of the freedom space approach.
-
Abstract Large‐scale flood modelling approaches designed for regional to continental scales usually rely on relatively simple assumptions to represent the potentially highly complex river bathymetry at the watershed scale based on digital elevation models (DEMs) with a resolution in the range of 25–30 m. Here, high‐resolution (1 m) LiDAR DEMs are employed to present a novel large‐scale methodology using a more realistic estimation of bathymetry based on hydrogeomorphological GIS tools to extract water surface slope. The large‐scale 1D/2D flood model LISFLOOD‐FP is applied to validate the simulated flood levels using detailed water level data in four different watersheds in Quebec (Canada), including continuous profiles over extensive distances measured with the HydroBall technology. A GIS‐automated procedure allows to obtain the average width required to run LISFLOOD‐FP. The GIS‐automated procedure to estimate bathymetry from LiDAR water surface data uses a hydraulic inverse problem based on discharge at the time of acquisition of LiDAR data. A tiling approach, allowing several small independent hydraulic simulations to cover an entire watershed, greatly improves processing time to simulate large watersheds with a 10‐m resampled LiDAR DEM. Results show significant improvements to large‐scale flood modelling at the watershed scale with standard deviation in the range of 0.30 m and an average fit of around 90%. The main advantage of the proposed approach is to avoid the need to collect expensive bathymetry data to efficiently and accurately simulate flood levels over extensive areas.