Votre recherche
Résultats 13 ressources
-
Abstract Fluvial hazards of river mobility and flooding are often problematic for road infrastructure and need to be considered in the planning process. The extent of river and road infrastructure networks and their tendency to be close to each other creates a need to be able to identify the most dangerous areas quickly and cost‐effectively. In this study, we propose a novel methodology using random forest (RF) machine learning methods to provide easily interpretable fine‐scale fluvial hazard predictions for large river systems. The tools developed provide predictions for three models: presence of flooding (PFM), presence of mobility (PMM) and type of erosion model (TEM, lateral migration, or incision) at reference points every 100 m along the fluvial network of three watersheds within the province of Quebec, Canada. The RF models use variables focused on river conditions and hydrogeomorphological processes such as confinement, sinuosity, and upstream slope. Training/validation data included field observations, results from hydraulic and erosion models, government infrastructure databases, and hydro‐ geomorphological assessments using 1‐m DEM and satellite/historical imagery. A total of 1807 reference points were classified for flooding, 1542 for mobility, and 847 for the type of erosion out of the 11,452 reference points for the 1145 km of rivers included in the study. These were divided into training (75%) and validation (25%) datasets, with the training dataset used to train supervised RF models. The validation dataset indicated the models were capable of accurately predicting the potential for fluvial hazards to occur, with precision results for the three models ranging from 83% to 94% of points accurately predicted. The results of this study suggest that RF models are a cost‐effective tool to quickly evaluate the potential for fluvial hazards to occur at the watershed scale.
-
Abstract River confluences are characterized by a complex mixing zone with three‐dimensional (3D) turbulent structures which have been described as both streamwise‐oriented structures and Kelvin–Helmholtz (KH) vertical‐oriented structures. The latter are visible where there is a turbidity difference between the two tributaries, whereas the former are usually derived from mean velocity measurements or numerical simulations. Few field studies recorded turbulent velocity fluctuations at high frequency to investigate these structures, particularly at medium‐sized confluences where logistical constraints make it difficult to use devices such as acoustic doppler velocimeter (ADV). This study uses the ice cover present at the confluence of the Mitis and Neigette Rivers in Quebec (Canada) to obtain long‐duration, fixed measurements along the mixing zone. The confluence is also characterized by a marked turbidity difference which allows to investigate the mixing zone dynamics from drone imagery during ice‐free conditions. The aim of the study is to characterize and compare the flow structure in the mixing zone at a medium‐sized (~40 m) river confluence with and without an ice cover. Detailed 3D turbulent velocity measurements were taken under the ice along the mixing plane with an ADV through eight holes at around 20 positions on the vertical. For ice‐free conditions, drone imagery results indicate that large (KH) coherent structures are present, occupying up to 50% of the width of the parent channel. During winter, the ice cover affects velocity profiles by moving the highest velocities towards the centre of the profiles. Large turbulent structures are visible in both the streamwise and lateral velocity components. The strong correlation between these velocity components indicates that KH vortices are the dominating coherent structures in the mixing zone. A spatio‐temporal conceptual model is presented to illustrate the main differences on the 3D flow structure at the river confluence with and without the ice cover. © 2019 John Wiley & Sons, Ltd.
-
Abstract Integrating hydrogeomorphological (HGM) principles into the restoration of degraded rivers can achieve sustainable results and provide various human benefits. HGM principles mainly involve understanding the context and processes that shape a fluvial system before any intervention, in order to support its dynamism and to align with its potential functioning and uses. Despite recent management approaches inspired by HGM principles, most restoration projects carried out in Quebec (Canada) are not process‐based and target specific one‐dimensional objectives. Although there is an overall lack of post‐project monitoring, several projects appear to have failed or had mixed success. This research aims to shed light on the diversity of societal drivers behind river restoration projects and to examine how they influence the integration of HGM principles and human benefits. Four restoration projects were characterized through participant observation and interviews with the organizations running them. Representatives of two ministries involved in river restoration and management were also interviewed. The results show that projects were mainly shaped by public acceptance disregarding HGM principles, which can lead to poorly‐informed action. Project funding and stakeholders' expertise have also challenged project implementation and played a key role in defining their objectives. The addition of these components improve the current analytical frameworks for identifying river restoration objectives. Depending on specific sociocultural, political and legislative contexts, funding programs and stakeholders' expertise may either facilitate or restrict the integration of HGM principles and human benefits in the projects. Recognizing these key drivers reframes river restoration as a fundamentally social activity and enlightens how they could impel innovative approaches towards more sustainable results.
-
Abstract Fluvial biogeomorphology has proven to be efficient in understanding the evolution of rivers in terms of vegetation succession and channel adjustment. The role of floods as the primary disturbance regime factor has been widely studied, and our knowledge of their effects on vegetation and channel adjustment has grown significantly in the last two decades. However, cold rivers experiencing ice dynamics (e.g., ice jams and mechanical breakups) as an additional disturbance regime have not yet been studied within a biogeomorphological scope. This study investigated the long‐term effects of ice dynamics on channel adjustments and vegetation trajectories in two rivers with different geomorphological behaviours, one laterally confined (Matapédia River) and one mobile (Petite‐Cascapédia River), in Quebec, Canada. Using dendrochronological analysis, historical data and aerial photographs from 1963 to 2016, this study reconstructed ice jam chronologies, characterized flood regimes and analysed vegetation and channel changes through a photointerpretation approach. The main findings of this study indicate that geomorphological impacts of mechanical ice breakups are not significant at the decadal and reach scales and that they might not be the primary factors of long‐term geomorphological control. However, results have shown that vegetation was more sensitive to ice dynamics. Reaches presenting frequent ice jams depicted high regression rates and turnovers even during years with very low floods, suggesting that ice dynamics significantly increase shear stress on plant patches. This study also highlights the high resiliency of both rivers to ice jam disturbances, with vegetation communities and channel forms recovering within a decade. With the uncertainties following the reach/corridor and decadal scales, future research should focus on long‐term monitoring and refined spatial scales to better understand the mechanisms behind the complex interactions among ice dynamics, vegetation and hydrogeomorphological processes in cold rivers.
-
Résumé L'hydrogéomorphologie étudie la dynamique des rivières en se concentrant sur les interactions liant la structure des écoulements, la mobilisation et le transport des sédiments et les morphologies qui caractérisent les cours d'eau et leur bassin‐versant. Elle offre un cadre d'analyse et des outils pour une meilleure intégration des connaissances sur la dynamique des rivières pour la gestion des cours d'eau au sens large, et plus spécifiquement, pour leur restauration, leur aménagement et pour l'évaluation et la prévention des risques liés aux aléas fluviaux. Au Québec, l'hydrogéomorphologie émerge comme contribution significative dans les approches de gestion et d'évaluation du risque et se trouve au cœur d'un changement de paradigme dans la gestion des cours d'eau par lequel la restauration des processus vise à augmenter la résilience des systèmes et des sociétés et à améliorer la qualité des environnements fluviaux. Cette contribution expose la trajectoire de l'hydrogéomorphologie au Québec à partir des publications scientifiques de géographes du Québec et discute des visées de la discipline en recherche et en intégration des connaissances pour la gestion des cours d'eau . , Abstract Hydrogeomorphology studies river dynamics, focusing on the interactions between flow structure, sediment transport, and the morphologies that characterize rivers and their watersheds. It provides an analytical framework and tools for better integrating knowledge of river dynamics into river management in the broadest sense, and more specifically, into river restoration as well as into the assessment and prevention of risks associated with fluvial hazards. In Quebec, hydrogeomorphology is emerging as a significant contribution to risk assessment and management approaches, and is at the heart of a paradigm shift in river management whereby process restoration aims to increase the resilience of fluvial systems and societies, and improve the quality of fluvial environments. This contribution outlines the trajectory of hydrogeomorphology in Quebec, based on scientific publications by Quebec geographers, and discusses the discipline's aims in research and knowledge integration for river management . , Messages clés Les géographes du Québec ont contribué fortement au développement des connaissances et outils de l'hydrogéomorphologie. L'hydrogéomorphologie a évolué d'une science fondamentale à une science où les connaissances fondamentales sont au service de la gestion des cours d'eau. L'hydrogéomorphologie et le cortège de connaissances et d'outils qu'elle promeut font de cette discipline une partenaire clé pour une gestion holistique des cours d'eau.
-
In agricultural watersheds, human interventions such as channel straightening have disrupted the hydrologic connectivity between headwater streams and their riparian environment and have thus undermined the ecological services provided by these small streams. Knowledge of the hydrologic connectivity between these streams and their immediate environment (shallow riparian groundwater in the historical floodplain and on adjacent hillslopes) in human-impacted settings is critical for understanding and restoring these hydrological systems but remains largely incomplete. The objective of this research is to investigate the hydrogeomorphological conditions controlling hydrologic connectivity in the historical floodplain of straightened lowland streams. Detailed measurements on the spatiotemporal variability of groundwater-surface water interactions between straightened reaches, historical floodplain including abandoned meanders, and the adjacent hillslopes were obtained using a dense network of piezometers at two sites in the St. Lawrence Lowlands (Quebec, Canada). Results show that the complex mechanisms controlling hydrologic connectivity in naturally meandering lowland rivers also operate in highly disturbed straightened reaches, despite backfilling and agricultural practices. The pre-straightening hydrogeomorphological configuration of the floodplain partly explains the complex patterns of piezometric fluctuations observed at the sites. The apex of the abandoned meanders stands out as a focal area of hydrologic connectivity as water levels indicate pressure transfer that may reflect flows from the stream, the hillslopes, and the surrounding historical floodplain. These unique field observations suggest that abandoned meanders should be promoted as key elements of restoration strategies in lowland agricultural straightened headwater streams.
-
Abstract Although hydraulic infrastructure such as levees remain important for flood risk management in the USA, France, and Quebec (Canada), there is increasing emphasis on nonstructural measures, such as regulatory flood maps, to reduce exposure and vulnerability, for example, preventing people from building in high hazard areas. One key concept related to areas protected by levees is that of “residual risk”, that is, the risk from floods greater than the design standard of the levees (levee overtopping) and from levee breach. In this article, we review the legislative framework for regulatory flood maps in the USA, France, and Quebec (Canada) and compare how residual risk behind protective structures is taken into account (or not) in regulatory flood maps. We find big differences in how the USA, France and Canada manage residual risk behind the levees. While in France the area behind levees is part of the regulatory flood prone area, and land use restrictions, building codes, emergency measures and risk communication are mandatory, in the USA the area behind levees is only shown as part of the regulatory flood prone area if the levee is not accredited. In Quebec, regulatory flood maps in general follow the French approach with a few exceptions.
-
In gravelly floodplains, streamflood events induce groundwater floodwaves that propagate through the alluvial aquifer. Understanding groundwater floodwave dynamics can contribute to groundwater flood risk management. This study documents groundwater floodwaves on a flood event basis to fully assess environmental factors that control their propagation velocity, their amplitude and their extension in the floodplain, and examines the expression of groundwater flooding in the Matane River floodplain (Quebec, Canada). An array of 15 piezometers equipped with automated level sensors and a river stage gauge monitoring at 15-minute intervals from September 2011 to September 2014 were installed within a 0.04-km2 area of the floodplain. Cross-correlation analyses were performed between piezometric and river-level time series for 54 flood events. The results reveal that groundwater floodwave propagation occurs at all flood magnitudes. The smaller floods produced a clear groundwater floodwave through the floodplain, while the largest floods affected local groundwater flow orientation by generating an inversion of the hydraulic gradient. Propagation velocities ranging from 8 to 13 m/h, which are two to three orders of magnitude higher than groundwater velocity, were documented while the induced pulse propagated across the floodplain to more than 230 m from the channel. Propagation velocity and amplitude attenuation of the groundwater floodwaves depend both on flood event characteristics and the aquifer characteristics. Groundwater flooding events are documented at discharge below bankfull (< 0.5 Qbf). This study highlights the role of flood event hydrographs and environmental variables on groundwater floodwave properties and the complex relationship between flood event discharge and groundwater flooding. The role that groundwater floodwaves play in flood mapping and the ability of analytical solutions to reproduce them are also discussed.
-
Une coulee de slush (bouillie de neige fondante) est un ecoulement rapide constitue d’un melange de neige fondante, d’eau, de boue et de debris de toutes sortes. Les sept sites analyses demontrent que les coulees de slush peuvent survenir dans des contextes topographiques fort differents qui presentent toutefois des similitudes au niveau du mode d’enneigement et des conditions hydro-meteorologiques. Les coulees de slush etudiees demarrent dans des ruisseaux d’ordre 1 ou 2, etroits et peu profonds, de pente tres variable (de 1° a plus de 30°), qui sont combles par des bouchons de neige dense soufflee par le vent ou transportee par les avalanches. Parce qu’ils s’opposent a la libre circulation des eaux de fusion lors des periodes de fonte acceleree, ces bouchons de neige favorisent la saturation du manteau neigeux jusqu’a la rupture sous l’effet combine de la pression hydrostatique et de la gravite. Les onze coulees analysees, qui se sont produites entre 1936 et 2013, permettent de definir deux scenarios hydro-meteorologiques propices a leur declenchement : 1) des redoux de longue duree caracterises par des temperatures qui restent positives pendant plusieurs jours consecutifs sans apport de precipitations liquides; 2) des redoux relativement courts (moins de 48 heures) couples a des precipitations liquides abondantes. Largement meconnues au Quebec, les coulees de slush pourraient etre plus frequentes a l’avenir en reponse au rechauffement climatique en cours.
-
Abstract The consensus around the need for a shift in river management approaches to include more natural processes is steadily growing amongst scientists, practitioners, and governmental agencies. The freedom space for rivers concept promotes the delineation of a single space that integrates multiple fluvial dynamics such as floods, lateral migration, channel avulsions, and riparian wetlands connectivity. The objective of this research is to assess the validity of the hydrogeomorphological approach to delineate the freedom space for an extensive sampling of river reaches, covering 167 km, in contrasting watersheds in Quebec (Canada). Comparative analysis was conducted on the relative importance of erosion and flood processes on the freedom space delineation for various fluvial types. Semiautomated tools based on light detection and ranging (LiDAR) digital elevation models were also tested on an additional 274 km of watercourses to facilitate freedom space mapping over extensive zones and for highly dynamics environments such as alluvial fans. In the studied reaches, flood and erosion processes occur respectively, on average, in a space equivalent to 2.6 and 20.6 channel widths. In unconfined landscapes, flood processes represent an area up to almost four times the area of erosion processes expected in a 50‐year period. In partly confined and confined environments, erosion processes are more likely to exceed flooding zone, and therefore need to be integrated in the mapping. This study helps better determine the conditions for which the full methodology of freedom space mapping is required or where semiautomated methods can be used. It provides useful guidelines for the implementation of the freedom space approach.
-
Abstract Large‐scale flood modelling approaches designed for regional to continental scales usually rely on relatively simple assumptions to represent the potentially highly complex river bathymetry at the watershed scale based on digital elevation models (DEMs) with a resolution in the range of 25–30 m. Here, high‐resolution (1 m) LiDAR DEMs are employed to present a novel large‐scale methodology using a more realistic estimation of bathymetry based on hydrogeomorphological GIS tools to extract water surface slope. The large‐scale 1D/2D flood model LISFLOOD‐FP is applied to validate the simulated flood levels using detailed water level data in four different watersheds in Quebec (Canada), including continuous profiles over extensive distances measured with the HydroBall technology. A GIS‐automated procedure allows to obtain the average width required to run LISFLOOD‐FP. The GIS‐automated procedure to estimate bathymetry from LiDAR water surface data uses a hydraulic inverse problem based on discharge at the time of acquisition of LiDAR data. A tiling approach, allowing several small independent hydraulic simulations to cover an entire watershed, greatly improves processing time to simulate large watersheds with a 10‐m resampled LiDAR DEM. Results show significant improvements to large‐scale flood modelling at the watershed scale with standard deviation in the range of 0.30 m and an average fit of around 90%. The main advantage of the proposed approach is to avoid the need to collect expensive bathymetry data to efficiently and accurately simulate flood levels over extensive areas.