Votre recherche
Résultats 4 ressources
-
Abstract This paper focuses on evaluating the uncertainty of three common regionalization methods for predicting continuous streamflow in ungauged basins. A set of 268 basins covering 1.6 million km 2 in the province of Quebec was used to test the regionalization strategies. The multiple linear regression, spatial proximity, and physical similarity approaches were evaluated on the catchments using a leave‐one‐out cross‐validation scheme. The lumped conceptual HSAMI hydrological model was used throughout the study. A bootstrapping method was chosen to further estimate uncertainty due to parameter set selection for each of the parameter set/regionalization method pairs. Results show that parameter set selection can play an important role in regionalization method performance depending on the regionalization methods (and their variants) used and that equifinality does not contribute significantly to the overall uncertainty witnessed throughout the regionalization methods applications. Regression methods fail to consistently assign behavioral parameter sets to the pseudoungauged basins (i.e., the ones left out). Spatial proximity and physical similarity score better, the latter being the best. It is also shown that combining either physical similarity or spatial proximity with the multiple linear regression method can lead to an even more successful prediction rate. However, even the best methods were shown to be unreliable to an extent, as successful prediction rates never surpass 75%. Finally, this paper shows that the selection of catchment descriptors is crucial to the regionalization strategies' performance and that for the HSAMI model, the optimal number of donor catchments for transferred parameter sets lies between four and seven. , Key Points Uncertainty can be limited in regionalization Physical similarity method is best, followed by spatial proximity Regression‐augmented methods can yield better performance
-
Abstract Currently, there are a large number of diverse climate datasets in existence, which differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given application is therefore not a simple task. This study compares nine global/near-global precipitation datasets and three global temperature datasets over 3138 North American catchments. The chosen datasets all meet the minimum requirement of having at least 30 years of available data, so they could all potentially be used as reference datasets for climate change impact studies. The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-CDR V1R1), four reanalysis products (NCEP CFSR, JRA55, ERA-Interim, and ERA5), and one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based gridded precipitation and temperature datasets were combined as the reference dataset for this intercomparison study. To assess dataset performance, all combinations were used as inputs to a lumped hydrological model. The results showed that all temperature datasets performed similarly, albeit with the CPC performance being systematically inferior to that of the other three. Significant differences in performance were, however, observed between the precipitation datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis, and satellite datasets categories. Results also showed that gauge-based datasets should be preferred in regions with good weather network density, but CHIRPS and ERA5 would be good alternatives in data-sparse regions.
-