Votre recherche
Résultats 6 ressources
-
Abstract This work explores the relationship between catchment size, rainfall duration, and future streamflow increases on 133 North American catchments with sizes ranging from 66.5 to 9886 km2. It uses the outputs from a high spatial (0.11°) and temporal (1-h) resolution single model initial-condition large ensemble (SMILE) and a hydrological model to compute extreme rainfall and streamflow for durations ranging from 1 to 72 h and for return periods of between 2 and 300 years. Increases in extreme precipitation are observed across all durations and return periods. The projected increases are strongly related to duration, frequency, and catchment size, with the shortest durations, longest return periods, and smaller catchments witnessing the largest relative rainfall increases. These increases can be quite significant, with the 100-yr rainfall becoming up to 20 times more frequent over the smaller catchments. A similar duration–frequency–size pattern of increases is also observed for future extreme streamflow, but with even larger relative increases. These results imply that future increases in extreme rainfall will disproportionately impact smaller catchments, and particularly so for impervious urban catchments which are typically small, and whose stormwater drainage infrastructures are designed for long-return-period flows, both being conditions for which the amplification of future flow will be maximized.
-
Abstract. Efficient adaptation strategies to climate change require the estimation of future impacts and the uncertainty surrounding this estimation. Over- or underestimating future uncertainty may lead to maladaptation. Hydrological impact studies typically use a top-down approach in which multiple climate models are used to assess the uncertainty related to the climate model structure and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the concept of “model democracy”, in which each climate model is considered equally fit. The newer Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations, with several models showing a climate sensitivity larger than that of Phase 5 (CMIP5) and larger than the likely range based on past climate information and understanding of planetary physics, have reignited the model democracy debate. Some have suggested that “hot” models be removed from impact studies to avoid skewing impact results toward unlikely futures. Indeed, the inclusion of these models in impact studies carries a significant risk of overestimating the impact of climate change. This large-sample study looks at the impact of removing hot models on the projections of future streamflow over 3107 North American catchments. More precisely, the variability in future projections of mean, high, and low flows is evaluated using an ensemble of 19 CMIP6 general circulation models (GCMs), 5 of which are deemed hot based on their global equilibrium climate sensitivity (ECS). The results show that the reduced ensemble of 14 climate models provides streamflow projections with reduced future variability for Canada, Alaska, the Southeast US, and along the Pacific coast. Elsewhere, the reduced ensemble has either no impact or results in increased variability in future streamflow, indicating that global outlier climate models do not necessarily provide regional outlier projections of future impacts. These results emphasize the delicate nature of climate model selection, especially based on global fitness metrics that may not be appropriate for local and regional assessments.
-
Abstract. This study investigates the ability of long short-term memory (LSTM) neural networks to perform streamflow prediction at ungauged basins. A set of state-of-the-art, hydrological model-dependent regionalization methods are applied to 148 catchments in northeast North America and compared to an LSTM model that uses the exact same available data as the hydrological models. While conceptual model-based methods attempt to derive parameterizations at ungauged sites from other similar or nearby catchments, the LSTM model uses all available data in the region to maximize the information content and increase its robustness. Furthermore, by design, the LSTM does not require explicit definition of hydrological processes and derives its own structure from the provided data. The LSTM networks were able to clearly outperform the hydrological models in a leave-one-out cross-validation regionalization setting on most catchments in the study area, with the LSTM model outperforming the hydrological models in 93 % to 97 % of catchments depending on the hydrological model. Furthermore, for up to 78 % of the catchments, the LSTM model was able to predict streamflow more accurately on pseudo-ungauged catchments than hydrological models calibrated on the target data, showing that the LSTM model's structure was better suited to convert the meteorological data and geophysical descriptors into streamflow than the hydrological models even calibrated to those sites in these cases. Furthermore, the LSTM model robustness was tested by varying its hyperparameters, and still outperformed hydrological models in regionalization in almost all cases. Overall, LSTM networks have the potential to change the regionalization research landscape by providing clear improvement pathways over traditional methods in the field of streamflow prediction in ungauged catchments.