UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Brissette, François"

Résultats 20 ressources

PertinenceRecently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Faghih, M., & Brissette, F. (2023). Temporal and Spatial Amplification of Extreme Rainfall and Extreme Floods in a Warmer Climate. Journal of Hydrometeorology, 24(8). https://doi.org/10.1175/JHM-D-22-0224.1

    Abstract This work explores the relationship between catchment size, rainfall duration, and future streamflow increases on 133 North American catchments with sizes ranging from 66.5 to 9886 km2. It uses the outputs from a high spatial (0.11°) and temporal (1-h) resolution single model initial-condition large ensemble (SMILE) and a hydrological model to compute extreme rainfall and streamflow for durations ranging from 1 to 72 h and for return periods of between 2 and 300 years. Increases in extreme precipitation are observed across all durations and return periods. The projected increases are strongly related to duration, frequency, and catchment size, with the shortest durations, longest return periods, and smaller catchments witnessing the largest relative rainfall increases. These increases can be quite significant, with the 100-yr rainfall becoming up to 20 times more frequent over the smaller catchments. A similar duration–frequency–size pattern of increases is also observed for future extreme streamflow, but with even larger relative increases. These results imply that future increases in extreme rainfall will disproportionately impact smaller catchments, and particularly so for impervious urban catchments which are typically small, and whose stormwater drainage infrastructures are designed for long-return-period flows, both being conditions for which the amplification of future flow will be maximized.

    Consulter sur journals.ametsoc.org
  • Faghih, M., & Brissette, F. (2023). The role of internal climate variability on future streamflow projections. Journal of Hydrology, 625, 130101. https://doi.org/10.1016/j.jhydrol.2023.130101
    Consulter sur linkinghub.elsevier.com
  • Arsenault, R., & Brissette, F. P. (2014). Continuous streamflow prediction in ungauged basins: The effects of equifinality and parameter set selection on uncertainty in regionalization approaches. Water Resources Research, 50(7). https://doi.org/10.1002/2013WR014898

    Abstract This paper focuses on evaluating the uncertainty of three common regionalization methods for predicting continuous streamflow in ungauged basins. A set of 268 basins covering 1.6 million km 2 in the province of Quebec was used to test the regionalization strategies. The multiple linear regression, spatial proximity, and physical similarity approaches were evaluated on the catchments using a leave‐one‐out cross‐validation scheme. The lumped conceptual HSAMI hydrological model was used throughout the study. A bootstrapping method was chosen to further estimate uncertainty due to parameter set selection for each of the parameter set/regionalization method pairs. Results show that parameter set selection can play an important role in regionalization method performance depending on the regionalization methods (and their variants) used and that equifinality does not contribute significantly to the overall uncertainty witnessed throughout the regionalization methods applications. Regression methods fail to consistently assign behavioral parameter sets to the pseudoungauged basins (i.e., the ones left out). Spatial proximity and physical similarity score better, the latter being the best. It is also shown that combining either physical similarity or spatial proximity with the multiple linear regression method can lead to an even more successful prediction rate. However, even the best methods were shown to be unreliable to an extent, as successful prediction rates never surpass 75%. Finally, this paper shows that the selection of catchment descriptors is crucial to the regionalization strategies' performance and that for the HSAMI model, the optimal number of donor catchments for transferred parameter sets lies between four and seven. , Key Points Uncertainty can be limited in regionalization Physical similarity method is best, followed by spatial proximity Regression‐augmented methods can yield better performance

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Tarek, M., Brissette, F., & Arsenault, R. (2021). Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies. Hydrology and Earth System Sciences, 25(6), 3331–3350. https://doi.org/10.5194/hess-25-3331-2021

    Abstract. Climate change impact studies require a reference climatological dataset providing a baseline period to assess future changes and post-process climate model biases. High-resolution gridded precipitation and temperature datasets interpolated from weather stations are available in regions of high-density networks of weather stations, as is the case in most parts of Europe and the United States. In many of the world's regions, however, the low density of observational networks renders gauge-based datasets highly uncertain. Satellite, reanalysis and merged product datasets have been used to overcome this deficiency. However, it is not known how much uncertainty the choice of a reference dataset may bring to impact studies. To tackle this issue, this study compares nine precipitation and two temperature datasets over 1145 African catchments to evaluate the dataset uncertainty contribution to the results of climate change studies. These deterministic datasets all cover a common 30-year period needed to define the reference period climate. The precipitation datasets include two gauge-only products (GPCC and CPC Unified), two satellite products (CHIRPS and PERSIANN-CDR) corrected using ground-based observations, four reanalysis products (JRA55, NCEP-CFSR, ERA-I and ERA5) and one merged gauged, satellite and reanalysis product (MSWEP). The temperature datasets include one gauged-only (CPC Unified) product and one reanalysis (ERA5) product. All combinations of these precipitation and temperature datasets were used to assess changes in future streamflows. To assess dataset uncertainty against that of other sources of uncertainty, the climate change impact study used a top-down hydroclimatic modeling chain using 10 CMIP5 (fifth Coupled Model Intercomparison Project) general circulation models (GCMs) under RCP8.5 and two lumped hydrological models (HMETS and GR4J) to generate future streamflows over the 2071–2100 period. Variance decomposition was performed to compare how much the different uncertainty sources contribute to actual uncertainty. Results show that all precipitation and temperature datasets provide good streamflow simulations over the reference period, but four precipitation datasets outperformed the others for most catchments. They are, in order, MSWEP, CHIRPS, PERSIANN and ERA5. For the present study, the two-member ensemble of temperature datasets provided negligible levels of uncertainty. However, the ensemble of nine precipitation datasets provided uncertainty that was equal to or larger than that related to GCMs for most of the streamflow metrics and over most of the catchments. A selection of the four best-performing reference datasets (credibility ensemble) significantly reduced the uncertainty attributed to precipitation for most metrics but still remained the main source of uncertainty for some streamflow metrics. The choice of a reference dataset can therefore be critical to climate change impact studies as apparently small differences between datasets over a common reference period can propagate to generate large amounts of uncertainty in future climate streamflows.

    Consulter sur hess.copernicus.org
  • Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Large-Scale Analysis of Global Gridded Precipitation and Temperature Datasets for Climate Change Impact Studies. Journal of Hydrometeorology, 21(11), 2623–2640. https://doi.org/10.1175/JHM-D-20-0100.1

    Abstract Currently, there are a large number of diverse climate datasets in existence, which differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given application is therefore not a simple task. This study compares nine global/near-global precipitation datasets and three global temperature datasets over 3138 North American catchments. The chosen datasets all meet the minimum requirement of having at least 30 years of available data, so they could all potentially be used as reference datasets for climate change impact studies. The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-CDR V1R1), four reanalysis products (NCEP CFSR, JRA55, ERA-Interim, and ERA5), and one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based gridded precipitation and temperature datasets were combined as the reference dataset for this intercomparison study. To assess dataset performance, all combinations were used as inputs to a lumped hydrological model. The results showed that all temperature datasets performed similarly, albeit with the CPC performance being systematically inferior to that of the other three. Significant differences in performance were, however, observed between the precipitation datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis, and satellite datasets categories. Results also showed that gauge-based datasets should be preferred in regions with good weather network density, but CHIRPS and ERA5 would be good alternatives in data-sparse regions.

    Consulter sur journals.ametsoc.org
  • Sohrabi, S., Brissette, F. P., & Arsenault, R. (2021). Coupling large-scale climate indices with a stochastic weather generator to improve long-term streamflow forecasts in a Canadian watershed. Journal of Hydrology, 594, 125925. https://doi.org/10.1016/j.jhydrol.2020.125925
    Consulter sur linkinghub.elsevier.com
  • Troin, M., Arsenault, R., Fournier, E., & Brissette, F. (2021). Catchment Scale Evaluation of Multiple Global Hydrological Models from ISIMIP2a over North America. Water, 13(21), 3112. https://doi.org/10.3390/w13213112

    A satisfactory performance of hydrological models under historical climate conditions is considered a prerequisite step in any hydrological climate change impact study. Despite the significant interest in global hydrological modeling, few systematic evaluations of global hydrological models (gHMs) at the catchment scale have been carried out. This study investigates the performance of 4 gHMs driven by 4 global observation-based meteorological inputs at simulating weekly discharges over 198 large-sized North American catchments for the 1971–2010 period. The 16 discharge simulations serve as the basis for evaluating gHM accuracy at the catchment scale within the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). The simulated discharges by the four gHMs are compared against observed and simulated weekly discharge values by two regional hydrological models (rHMs) driven by a global meteorological dataset for the same period. We discuss the implications of both modeling approaches as well as the influence of catchment characteristics and global meteorological forcing in terms of model performance through statistical criteria and visual hydrograph comparison for catchment-scale hydrological studies. Overall, the gHM discharge statistics exhibit poor agreement with observations at the catchment scale and manifest considerable bias and errors in seasonal flow simulations. We confirm that the gHM approach, as experimentally implemented through the ISIMIP2a, must be used with caution for regional studies. We find the rHM approach to be more trustworthy and recommend using it for hydrological studies, especially if findings are intended to support operational decision-making.

    Consulter sur www.mdpi.com
  • Troin, M., Velázquez, J. A., Caya, D., & Brissette, F. (2015). Comparing statistical post-processing of regional and global climate scenarios for hydrological impacts assessment: a case study of two canadian catchments. Journal of Hydrology, 520. https://doi.org/10.1016/j.jhydrol.2014.11.047

    Summary Projected climate change effects on streamflow are investigated for the 2041–2070 horizon following the SRES A2 emissions scenario over two snowmelt-dominated catchments in Canada. A 16-member ensemble of SWAT hydrological model (HM) simulations, based on a comprehensive ensemble of the Canadian Regional Climate Model (CRCM) simulations driven by two global climate models (GCMs), with five realizations of the Canadian CGCM3 and three realizations of the German ECHAM5 is established per catchment. This study aims to evaluate, once model bias has been removed by statistical post-processing (SP), how the RCM-simulated climate changes differ from those of the parent GCMs, and how they affect the assessment of climate change-induced hydrological impacts at the catchment scale. The variability of streamflow caused by the use of different SP methods (mean-based versus distribution-based) within each statistical post-processing pathway of climate model outputs (bias correction versus perturbation) is also evaluated, as well as the uncertainty of natural climate variability. The simulations cover 1971–2000 in the reference period and 2041–2070 in the future period. For a set of criteria, results based on raw and statistically post-processed model outputs for the reference climate are compared with observations. This process demonstrates that SP is important not only for GCMs outputs, but also for CRCM outputs. SP leads to a high level of agreement between the CRCM and the driving GCMs in reproducing patterns of observed climate. The ensemble spread of the climate change signal on streamflow is large and varies with catchments and hydrological periods (winter/summer flows). The results of various hydrological indicators show that most of the uncertainty arises from the natural climate variability followed by the statistical post-processing. The uncertainty linked to the choice of statistical pathway is much larger than that associated with the choice of the method in quantifying the hydrological impacts. We find that the incorporation of dynamical downscaling of global models through the CRCM as an intermediate step in the GCM–RCM–SP–HM model chain does not lead to considerable differences in the assessment of the climate change impacts on streamflow for the study catchments.

  • Rahimpour Asenjan, M., Brissette, F., Martel, J.-L., & Arsenault, R. (2023). Understanding the influence of “hot” models in climate impact studies: a hydrological perspective. Hydrology and Earth System Sciences, 27(23), 4355–4367. https://doi.org/10.5194/hess-27-4355-2023

    Abstract. Efficient adaptation strategies to climate change require the estimation of future impacts and the uncertainty surrounding this estimation. Over- or underestimating future uncertainty may lead to maladaptation. Hydrological impact studies typically use a top-down approach in which multiple climate models are used to assess the uncertainty related to the climate model structure and climate sensitivity. Despite ongoing debate, impact modelers have typically embraced the concept of “model democracy”, in which each climate model is considered equally fit. The newer Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations, with several models showing a climate sensitivity larger than that of Phase 5 (CMIP5) and larger than the likely range based on past climate information and understanding of planetary physics, have reignited the model democracy debate. Some have suggested that “hot” models be removed from impact studies to avoid skewing impact results toward unlikely futures. Indeed, the inclusion of these models in impact studies carries a significant risk of overestimating the impact of climate change. This large-sample study looks at the impact of removing hot models on the projections of future streamflow over 3107 North American catchments. More precisely, the variability in future projections of mean, high, and low flows is evaluated using an ensemble of 19 CMIP6 general circulation models (GCMs), 5 of which are deemed hot based on their global equilibrium climate sensitivity (ECS). The results show that the reduced ensemble of 14 climate models provides streamflow projections with reduced future variability for Canada, Alaska, the Southeast US, and along the Pacific coast. Elsewhere, the reduced ensemble has either no impact or results in increased variability in future streamflow, indicating that global outlier climate models do not necessarily provide regional outlier projections of future impacts. These results emphasize the delicate nature of climate model selection, especially based on global fitness metrics that may not be appropriate for local and regional assessments.

    Consulter sur hess.copernicus.org
  • Arsenault, R., Martel, J.-L., Brunet, F., Brissette, F., & Mai, J. (2023). Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models. Hydrology and Earth System Sciences, 27(1), 139–157. https://doi.org/10.5194/hess-27-139-2023

    Abstract. This study investigates the ability of long short-term memory (LSTM) neural networks to perform streamflow prediction at ungauged basins. A set of state-of-the-art, hydrological model-dependent regionalization methods are applied to 148 catchments in northeast North America and compared to an LSTM model that uses the exact same available data as the hydrological models. While conceptual model-based methods attempt to derive parameterizations at ungauged sites from other similar or nearby catchments, the LSTM model uses all available data in the region to maximize the information content and increase its robustness. Furthermore, by design, the LSTM does not require explicit definition of hydrological processes and derives its own structure from the provided data. The LSTM networks were able to clearly outperform the hydrological models in a leave-one-out cross-validation regionalization setting on most catchments in the study area, with the LSTM model outperforming the hydrological models in 93 % to 97 % of catchments depending on the hydrological model. Furthermore, for up to 78 % of the catchments, the LSTM model was able to predict streamflow more accurately on pseudo-ungauged catchments than hydrological models calibrated on the target data, showing that the LSTM model's structure was better suited to convert the meteorological data and geophysical descriptors into streamflow than the hydrological models even calibrated to those sites in these cases. Furthermore, the LSTM model robustness was tested by varying its hyperparameters, and still outperformed hydrological models in regionalization in almost all cases. Overall, LSTM networks have the potential to change the regionalization research landscape by providing clear improvement pathways over traditional methods in the field of streamflow prediction in ungauged catchments.

    Consulter sur hess.copernicus.org
  • Ionno, A., Arsenault, R., Troin, M., Martel, J.-L., & Brissette, F. (2024). Impacts of climate change on flood volumes over North American catchments. Journal of Hydrology, 630, 130688. https://doi.org/10.1016/j.jhydrol.2024.130688
    Consulter sur linkinghub.elsevier.com
  • Troin, M., Arsenault, R., Wood, A. W., Brissette, F., & Martel, J. (2021). Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years. Water Resources Research, 57(7). https://doi.org/10.1029/2020WR028392

    Abstract Ensemble forecasting applied to the field of hydrology is currently an established area of research embracing a broad spectrum of operational situations. This work catalogs the various pathways of ensemble streamflow forecasting based on an exhaustive review of more than 700 studies over the last 40 years. We focus on the advanced state of the art in the model‐based (dynamical) ensemble forecasting approaches. Ensemble streamflow prediction systems are categorized into three leading classes: statistics‐based streamflow prediction systems, climatology‐based ensemble streamflow prediction systems and numerical weather prediction‐based hydrological ensemble prediction systems. For each ensemble approach, technical information, as well as details about its strengths and weaknesses, are provided based on a critical review of the studies listed. Through this literature review, the performance and uncertainty associated with the ensemble forecasting systems are underlined from both operational and scientific viewpoints. Finally, the remaining key challenges and prospective future research directions are presented, notably through hybrid dynamical ‐ statistical learning approaches, which obviously present new challenges to be overcome in order to allow the successful employment of ensemble streamflow forecasting systems in the next decades. Targeting students, researchers and practitioners, this review provides a detailed perspective on the major features of an increasingly important area of hydrological forecasting. , Key Points This work summarizes the 40 years of research in the generation of streamflow forecasts based on an exhaustive review of studies Ensemble prediction systems are categorized into three classes: statistics‐based, climatology‐based and numerical weather prediction‐based hydrological ensemble prediction systems For each ensemble forecasting system, thorough technical information is provided

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Martel, J.-L., Brissette, F. P., Lucas-Picher, P., Troin, M., & Arsenault, R. (2021). Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. Journal of Hydrologic Engineering, 26(10), 03121001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002122
    Martel et al. - 2021 - Climate Change and Rainfall Intensity–Duration–Fre.pdf Martel et al. - 2021 - Climate Change and Rainfall Intensity–Duration–Fre.pdf
  • Castaneda-Gonzalez, M., Poulin, A., Romero-Lopez, R., Arsenault, R., Brissette, F., & Turcotte, R. (2019). Sensitivity of seasonal flood simulations to regional climate model spatial resolution. Climate Dynamics, 53(7). https://doi.org/10.1007/s00382-019-04789-y

    The potential impacts of floods are of significant concern to our modern society raising the need to identify and quantify all the uncertainties that can impact their simulations. Climate simulations at finer spatial resolutions are expected to bring more confidence in these hydrological simulations. However, the impact of the increasing spatial resolutions of climate simulations on floods simulations has to be evaluated. To address this issue, this paper assesses the sensitivity of summer–fall flood simulations to the Canadian Regional Climate Model (CRCM) grid resolution. Three climate simulations issued from the fifth version of the CRCM (CRCM5) driven by the ERA-Interim reanalysis at 0.44°, 0.22° and 0.11° resolutions are analysed at a daily time step for the 1981–2010 period. Raw CRCM5 precipitation and temperature outputs are used as inputs in the simple lumped conceptual hydrological model MOHYSE to simulate streamflows over 50 Quebec (Canada) basins. Summer–fall flooding is analysed by estimating four flood indicators: the 2-year, 5-year, 10-year and 20-year return periods from the CRCM5-driven streamflows. The results show systematic impacts of spatial resolution on CRCM5 outputs and seasonal flood simulations. Floods simulated with coarser climate datasets present smaller peak discharges than those simulated with the finer climate outputs. Smaller catchments show larger sensitivity to spatial resolution as more detail can be obtained from the finer grids. Overall, this work contributes to understanding the sensitivity of streamflow modelling to the climate model’s resolution, highlighting yet another uncertainty source to consider in hydrological climate change impact studies.

  • Brigode, P., Brissette, F., Nicault, A., Perreault, L., Kuentz, A., Mathevet, T., & Gailhard, J. (2016). Streamflow variability over the 1881–2011 period in northern Québec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis. Climate of The Past, 12(9). https://doi.org/10.5194/cp-12-1785-2016

    Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Quebec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over the 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. The results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.

  • Lucas‐Picher, P., Lachance‐Cloutier, S., Arsenault, R., Poulin, A., Ricard, S., Turcotte, R., & Brissette, F. (2021). Will Evolving Climate Conditions Increase the Risk of Floods of the Large U.S.‐Canada Transboundary Richelieu River Basin? JAWRA Journal of the American Water Resources Association, 57(1), 32–56. https://doi.org/10.1111/1752-1688.12891

    Abstract In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.

    Consulter sur onlinelibrary.wiley.com
  • Sabzipour, B., Arsenault, R., Troin, M., Martel, J.-L., Brissette, F., Brunet, F., & Mai, J. (2023). Comparing a long short-term memory (LSTM) neural network with a physically-based hydrological model for streamflow forecasting over a Canadian catchment. Journal of Hydrology, 627, 130380. https://doi.org/10.1016/j.jhydrol.2023.130380
    Consulter sur linkinghub.elsevier.com
  • Benoit, T., Martel, J.-L., Bilodeau, É., Brissette, F., Charron, A., Brulé, D., Rivard, G., & Deslauriers, S. (2025). Limits of Blue and Green Infrastructures to Adapt Actual Urban Drainage Systems to the Impact of Climate Change. Journal of Irrigation and Drainage Engineering, 151(2), 04025003. https://doi.org/10.1061/JIDEDH.IRENG-10330
    Consulter sur ascelibrary.org
  • Armstrong, W., Arsenault, R., Martel, J.-L., Troin, M., Dion, P., Sabzipour, B., Brissette, F., & Mai, J. (2024). A Hybrid Multi-Model Approach for Hydrological Ensemble Forecasting: The Added Value of Deep Learning Models. https://doi.org/10.2139/ssrn.4737841
    Consulter sur www.ssrn.com
  • Arsenault, R., Huard, D., Martel, J.-L., Troin, M., Mai, J., Brissette, F., Jauvin, C., Vu, L., Craig, J. R., Smith, T. J., Logan, T., Tolson, B. A., Han, M., Gravel, F., & Langlois, S. (2023). The PAVICS-Hydro platform: A virtual laboratory for hydroclimatic modelling and forecasting over North America. Environmental Modelling & Software, 168, 105808. https://doi.org/10.1016/j.envsoft.2023.105808
    Consulter sur linkinghub.elsevier.com
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-06-16 06 h 56 (UTC)

Explorer

Axes du RIISQ

  • 4 - réduction des vulnérabilités (1)
  • 5 - aide à la décision, à l’adaptation et à la résilience (2)

Lieux

  • Canada (hors-Québec) (1)
  • États-Unis (1)

Secteurs et disciplines

  • Nature et Technologie (5)
  • Société et Culture (1)

Types d'événements extrêmes

  • Inondations et crues (4)

Types d'inondations

  • Fluviales (1)

Type de ressource

  • Article de revue (19)
  • Prépublication (1)

Année de publication

  • Entre 2000 et 2025 (20)
    • Entre 2010 et 2019 (4)
      • 2014 (1)
      • 2015 (1)
      • 2016 (1)
      • 2019 (1)
    • Entre 2020 et 2025 (16)
      • 2020 (1)
      • 2021 (6)
      • 2023 (6)
      • 2024 (2)
      • 2025 (1)

Langue de la ressource

  • Anglais (14)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web