Votre recherche
Résultats 7 ressources
-
Abstract. Seeking more accuracy and reliability, the hydrometeorological community has developed several tools to decipher the different sources of uncertainty in relevant modeling processes. Among them, the ensemble Kalman filter (EnKF), multimodel approaches and meteorological ensemble forecasting proved to have the capability to improve upon deterministic hydrological forecast. This study aims to untangle the sources of uncertainty by studying the combination of these tools and assessing their respective contribution to the overall forecast quality. Each of these components is able to capture a certain aspect of the total uncertainty and improve the forecast at different stages in the forecasting process by using different means. Their combination outperforms any of the tools used solely. The EnKF is shown to contribute largely to the ensemble accuracy and dispersion, indicating that the initial conditions uncertainty is dominant. However, it fails to maintain the required dispersion throughout the entire forecast horizon and needs to be supported by a multimodel approach to take into account structural uncertainty. Moreover, the multimodel approach contributes to improving the general forecasting performance and prevents this performance from falling into the model selection pitfall since models differ strongly in their ability. Finally, the use of probabilistic meteorological forcing was found to contribute mostly to long lead time reliability. Particular attention needs to be paid to the combination of the tools, especially in the EnKF tuning to avoid overlapping in error deciphering.
-
Abstract In water resources applications (e.g., streamflow, rainfall‐runoff, urban water demand [UWD], etc.), ensemble member selection and ensemble member weighting are two difficult yet important tasks in the development of ensemble forecasting systems. We propose and test a stochastic data‐driven ensemble forecasting framework that uses archived deterministic forecasts as input and results in probabilistic water resources forecasts. In addition to input data and (ensemble) model output uncertainty, the proposed approach integrates both ensemble member selection and weighting uncertainties, using input variable selection and data‐driven methods, respectively. Therefore, it does not require one to perform ensemble member selection and weighting separately. We applied the proposed forecasting framework to a previous real‐world case study in Montreal, Canada, to forecast daily UWD at multiple lead times. Using wavelet‐based forecasts as input data, we develop the Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, the first multiwavelet ensemble stochastic forecasting framework that produces probabilistic forecasts. For the considered case study, several variants of Ensemble Wavelet‐Stochastic Data‐Driven Forecasting Framework, produced using different input variable selection methods (partial correlation input selection and Edgeworth Approximations‐based conditional mutual information) and data‐driven models (multiple linear regression, extreme learning machines, and second‐order Volterra series models), are shown to outperform wavelet‐ and nonwavelet‐based benchmarks, especially during a heat wave (first time studied in the UWD forecasting literature). , Key Points A stochastic data‐driven ensemble framework is introduced for probabilistic water resources forecasting Ensemble member selection and weighting uncertainties are explicitly considered alongside input data and model output uncertainties Wavelet‐based model outputs are used as input to the framework for an urban water demand forecasting study outperforming benchmark methods
-
Floods can cause extensive damage proportional to their magnitude, depending on the watershed hydrology and terrain characteristics. Flood studies generally assume bathymetry as steady, while in reality it is constantly changing due to sediment transport. This study seeks to quantify the impact of different lake bathymetry conditions on flood dynamics. The Hydrotel and Telemac2D models are used to simulate floods for a lake with bathymetries from multiple year surveys. The bathymetries differ in bed elevation due to sediment accumulation and/or remobilisation. Results show that bathymetric differences produce a more noticeable effect for moderate flows than for maximum flows. During moderate flows, shallower bathymetries induce higher water levels and larger water extents. For peak flows, differences in water levels and extent are practically negligible for the different bathymetries tested. Higher water levels during moderate flows could produce longer flooding times and affect the community’s perception of flood impacts.
-
Abstract. Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness and integrate a broad variety of predictions from dynamical, physics-based models – such as numerical weather prediction, climate, land, hydrology, and Earth system models – into a final prediction product. They are recognized as a promising way of enhancing the prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing attention due to advances in weather and climate prediction systems at subseasonal to decadal scales, a better appreciation of the strengths of AI, and expanding access to computational resources and methods. Such systems are attractive because they may avoid the need to run a computationally expensive offline land model, can minimize the effect of biases that exist within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining different sources of predictability with varying time horizons. Here we review recent developments in hybrid hydroclimatic forecasting and outline key challenges and opportunities for further research. These include obtaining physically explainable results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive skill, creating seamless prediction schemes that merge short to long lead times, incorporating initial land surface and ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational uptake of hybrid prediction schemes.