Votre recherche
Résultats 4 ressources
-
Abstract Large rivers can retain a substantial amount of nitrogen (N), particularly in submerged aquatic vegetation (SAV) meadows that may act as disproportionate control points for N retention. However, the temporal variation of N retention in large rivers remains unknown since past measurements were snapshots in time. Using high‐frequency plants and NO 3 − measurements over the summers 2012–2017, we investigated how the climate variation influenced N retention in a SAV meadow (∼10 km 2 ) at the confluence zone of two agricultural tributaries entering the St. Lawrence River. Distinctive combinations of water temperature and level were recorded between years, ranging from extreme hot‐low (2012) and cold‐high (2017) summers (2°C and 1.4 m interannual range). Using an indicator of SAV biomass, we found that these extreme hot‐low and cold‐high years had reduced biomass compared to hot summers with intermediate levels. In addition, changes in main stem water levels were asynchronous with the tributary discharges that controlled NO 3 − inputs at the confluence. We estimated daily N uptake rates from a moored NO 3 − sensor and partitioned these into assimilatory and dissimilatory pathways. Measured rates were variable but among the highest reported in rivers (median 576 mg N m −2 d −1 , range 60–3,893 mg N m −2 d −1 ) and SAV biomass promoted greater proportional retention and permanent N loss through denitrification. We estimated that the SAV meadow could retain up to 0.8 kt N per year and 87% of N inputs, but this valuable ecosystem service is contingent on how climate variations modulate both N loads and SAV biomass. , Plain Language Summary Large rivers remove significant amounts of nitrogen pollution generated by humans in waste waters and from fertilizers applied to agricultural lands. Underwater meadows of aquatic plants remove nitrogen particularly well. To keep the river clean, plants use the nitrogen themselves and promote conditions where bacteria can convert this pollution into a gas typically found in air. Measuring nitrogen removal in rivers is really difficult, and we do not know how climate conditions influence this removal or plant abundance. We successfully measured nitrogen pollution removal from an underwater plant meadow in a large river over six summers. We found that plant abundance and river nitrogen inputs were critical to determine how much pollution was removed, and that these were controlled by climatic conditions. Plant abundance was controlled by both water temperatures and levels. When water was warm and levels were neither too high nor too low, conditions were perfect for lots of plants to grow, which mainly stimulated bacteria that permanently eliminated nitrogen. We showed that the amount of nitrogen pollution removed over the summer by the meadow changes with climatic conditions but in general represents the amount produced by a city of half a million people. , Key Points Nitrogen retention and biomass were measured at a high resolution over six summers in a submerged aquatic vegetation meadow of a large river Among the highest riverine, nitrate uptake rates were recorded, and 47%–87% of loads were retained with plants favoring denitrification Interannual climate variations influenced nitrate retention by altering water levels, temperature, plant biomass, and tributary nitrate load
-
Floods are among natural disasters that increasingly threaten society, especially with current and future climate change trends. Several tools have been developed to help planners manage the risks associated to flooding, including the mapping of flood-prone areas, but one of the major challenges is still the availability of detailed data, particularly bathymetry. This manuscript compares two modeling approaches to produce flood maps. An innovative large-scale approach that, without bathymetric data, estimates by inverse modeling the bed section for a given flow and a given roughness coefficient through 1 D/2D hydraulic modeling (LISFLOOD-FP). And a local approach, with a detailed coupled 1 D/2D hydraulic model (HEC-RAS) that uses all available information at the bed and floodplain (LiDAR and bathymetry). Both implementations revealed good performance values for flood peak levels as well as excellent fit indices in describing the areal extent of flooding. As expected, the local approach is more accurate, but the results of the large-scale approach are very promising especially for areas lacking bathymetric data and for large-scale governmental programs.
-
Les changements climatiques anticipés produiront des crues plus fréquentes et des étiages plus prononcés qui menaceront la sécurité publique et l’état des écosystèmes fluviaux. L’espace de liberté des cours d’eau est un cadre de gestion intégrée considérant l’hydrogéomorphologie des rivières. Il vise à identifier des espaces d’inondabilité et de mobilité du cours d’eau où on accepte de le laisser évoluer plutôt que de le contraindre dans un tracé façonné par les interventions anthropiques. Cette approche apparaît prometteuse pour une gestion durable dans un climat changeant, car elle maintient les fonctions physiques naturelles des cours d’eau (transport de l’eau et des sédiments), ce qui augmente leur résilience. L’espace de liberté reconnaît aussi le rôle majeur de la connectivité entre la rivière et la nappe phréatique, notamment par l'entremise des milieux humides qui contribuent à l’atténuation des crues et des étiages et à une amélioration de la qualité de l’eau. Les objectifs de ce projet consistent à 1) développer l’approche de gestion des cours d’eau basée sur les concepts d’espace de liberté pour les cours d’eau du Québec et examiner sa mise en œuvre pour renforcer la capacité de résilience des rivières dans un contexte de changements climatiques; 2) évaluer la connectivité entre la rivière et la nappe afin de mieux comprendre le rôle des milieux humides dans l'espace de liberté des cours d’eau et 3) effectuer une analyse avantages-coûts de l’implantation d’un espace de liberté. L’espace de liberté a été déterminé par l’approche hydrogéomorphologique et cartographié pour trois cours d’eau contrastés du Québec (rivières de la Roche et Yamaska Sud-Est en Montérégie et rivière Matane en Gaspésie). La démarche consiste 1) d’une analyse de photographies historiques anciennes, de modèles numériques d’altitude et d’observations sur le terrain; 2) de mesures simultanées des niveaux et des températures de la nappe phréatique et du cours d’eau et 3) de simulations numériques pour estimer l’impact des changements climatiques sur la mobilité et l’inondabilité des cours d’eau. La méthodologie développée pour définir l’espace de liberté est robuste et s’applique tant pour les cours d’eau agricoles (rivière de la Roche et Yamaska Sud-Est) que pour les rivières à saumon plus dynamiques comme la rivière Matane. L’espace de liberté inclut trois niveaux d’inondabilité (N1 : très fréquente et/ou avec forts courants, N2 : fréquente de faible courant, N3 : peu fréquente), deux niveaux de mobilité (M1 : à court terme (50 ans) et M2 : basée sur l’amplitude des méandres), ainsi que les milieux humides. Les analyses de sensibilité par simulation numérique révèlent que les limites de l’espace de liberté intègrent adéquatement la mobilité et l’inondabilité attendues dans un climat futur. Une cartographie simplifiée de l’espace de liberté, à deux niveaux, est également produite. L’espace de liberté minimal (L1) inclut les inondations très fréquentes (N1), les milieux humides riverains ainsi que la mobilité à court terme (M1). C’est une zone où il ne devrait pas y avoir d’aménagement. La zone L2 représente quant à elle l’espace fonctionnel de la rivière (N2 et M2) qui devrait être protégé afin que la dynamique naturelle de la rivière puisse opérer en climat actuel et futur. Les aménagements dans cette zone devraient tenir compte des risques d’érosion et d’inondation. Les résultats de l’analyse avantages-coûts suggèrent que l’aménagement d’espaces de liberté serait économiquement avantageux pour les trois cours d’eau. Malgré la perte du droit de construire et de cultiver dans l’espace de liberté, accompagnée par une compensation financière pour les agriculteurs, des gains nets variant entre 0,7 et 3,7 millions de dollars sont estimés sur une période de 50 ans. Ceci est dû aux réductions des coûts de protection des berges déjà stabilisées et qui le seraient à l’avenir, mais aussi aux services écologiques rendus par les milieux humides et les bandes riveraines. Une gestion par espace de liberté des cours d’eau du Québec exige un changement majeur dans nos perceptions et nos représentations des rivières qui, jusqu’à maintenant, ont été considérées comme des entités relativement statiques dans le paysage. Une telle approche apportera notamment comme avantage de faciliter l’adaptation aux risques liés à une plus grande variabilité des débits en climat futur par une gestion proactive qui améliore la santé des cours d’eau tout en étant avantageuse économiquement à moyen et à long terme. Elle contribuera également à diminuer les risques pour les infrastructures et la sécurité publique en utilisant une cartographie basée sur la dynamique des cours d’eau pour déterminer les zones où les aménagements devraient être interdits à l’avenir.