Votre recherche
Résultats 3 ressources
-
Abstract The increased frequency of mild rain‐on‐snow (R.O.S.) events in cold regions associated with climate change is projected to affect snowpack structure and hydrological behaviour. The ice layers that form in a cold snowpack when R.O.S. events occur have been shown to influence flowthrough processes and liquid water retention, with consequences for winter floods, groundwater recharge, and water resources management. This study explores interconnections between meteorological conditions, ice layer formation, and lateral flows during R.O.S. events throughout the 2018–2019 winter in meridional Quebec, Canada. Automated hydro‐meteorological measurements, such as water availability for runoff, snow water equivalent, and snowpit observations, are used to compute water and energy balances, making it possible to characterize a snowpack's internal conditions and flowthrough regimes. For compatibility assessment, water and energy balances‐based flowthrough scenarios are then compared to different hydro‐meteorological variables', such as water table or streamlet water levels. The results show an association between highly variable meteorological conditions, frequent R.O.S. events, and ice layer formation. Lateral flows were mainly observed during the early stage of the ablation period. The hydrologically significant lateral flows observed in the study are associated with winter conditions that are predicted to become more frequent in a changing climate, stressing the need for further evaluation of their potential impact at the watershed scale.
-
This paper presents the extension of the monolayer snow model of a semi-distributed hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of ice and air, while accounting for freezing rain. For two stations in Yukon and one station in northern Quebec, Canada, the multilayer model achieves high performances during calibration periods yet similar to the those of the monolayer model, with KGEs of up to 0.9. However, it increases the KGE values by up to 0.2 during the validation periods. The multilayer model provides more accurate estimations of maximum SWE and total spring snowmelt dates. This is due to its increased sensitivity to thermal atmospheric conditions. Although the multilayer model improves the estimation of snow heights overall, it exhibits excessive snow densities during spring snowmelt. Future research should aim to refine the representation of snow densities to enhance the accuracy of the multilayer model. Nevertheless, this model has the potential to improve the simulation of spring snowmelt, addressing a common limitation of the monolayer model.
-
Seasonal snowpack deeply influences the distribution of meltwater among watercourses and groundwater. During rain-on-snow (ROS) events, the structure and properties of the different snow and ice layers dictate the quantity and timing of water flowing out of the snowpack, increasing the risk of flooding and ice jams. With ongoing climate change, a better understanding of the processes and internal properties influencing snowpack outflows is needed to predict the hydrological consequences of winter melting episodes and increases in the frequency of ROS events. This study develops a multi-method approach to monitor the key snowpack properties in a non-mountainous environment in a repeated and non-destructive way. Snowpack evolution during the winter of 2020–2021 was evaluated using a drone-based, ground-penetrating radar (GPR) coupled with photogrammetry surveys conducted at the Ste-Marthe experimental watershed in Quebec, Canada. Drone-based surveys were performed over a 200 m2 area with a flat and a sloped section. In addition, time domain reflectometry (TDR) measurements were used to follow water flow through the snowpack and identify drivers of the changes in snowpack conditions, as observed in the drone-based surveys. The experimental watershed is equipped with state-of-the-art automatic weather stations that, together with weekly snow pit measurements over the ablation period, served as a reference for the multi-method monitoring approach. Drone surveys conducted on a weekly basis were used to generate georeferenced snow depth, density, snow water equivalent and bulk liquid water content maps. Despite some limitations, the results show that the combination of drone-based GPR, photogrammetric surveys and TDR is very promising for assessing the spatiotemporal evolution of the key hydrological characteristics of the snowpack. For instance, the tested method allowed for measuring marked differences in snow pack behaviour between the first and second weeks of the ablation period. A ROS event that occurred during the first week did not generate significant changes in snow pack density, liquid water content and water equivalent, while another one that happened in the second week of ablation generated changes in all three variables. After the second week of ablation, differences in density, liquid water content (LWC) and snow water equivalent (SWE) between the flat and the sloped sections of the study area were detected by the drone-based GPR measurements. Comparison between different events was made possible by the contact-free nature of the drone-based measurements.