Votre recherche
Résultats 6 ressources
-
Abstract The objective of this study is to compare the spatiotemporal variability of seasonal daily mean flows measured in 17 watersheds, grouped into three homogeneous hydroclimatic regions, during the period 1930–2023 in southern Quebec. With regard to spatial variability, unlike extreme daily flows, seasonal daily mean flows are very poorly correlated with physiographic factors and land use and land cover. In fall, they are not correlated with any physiographic or climatic factor. In winter, they are positively correlated with the rainfall and winter daily mean maximum temperatures. In spring, they are strongly correlated positively with the snowfall but negatively with the spring daily mean maximum temperatures. However, in summer, they are better correlated with forest area and, to a lesser extent, with the rainfall. As for their temporal variability, the application of six different statistical tests revealed a general increase in daily mean flows in winter due to early snowmelt and increased rainfall in fall. In summer, flows decreased significantly in the snowiest hydroclimatic region on the south shore due to the decrease in the snowfall. In spring, no significant change in flows was globally observed in the three hydroclimatic regions despite the decrease in the snowfall due to the increase in the rainfall. In fall, flows increased significantly south of 47°N on both shores due to the increase in the rainfall. This study demonstrates that, unlike extreme flows, the temporal variability of seasonal daily average flows is exclusively influenced by climatic variables in southern Quebec. Due to this influence, seasonal daily mean flows thus appear to be the best indicator for monitoring the impacts of changes in precipitation regimes and seasonal temperatures on river flows in southern Quebec.
-
Abstract Quebec is experiencing a significant increase in summer and fall temperatures and rainfall. This study compares the spatiotemporal variability of maximum daily flows generated by rainfall during the fall season (September–December) in relation to this climatic change and physiographic and land use factors. Analysis of the spatial variability of these maximum flows measured from 1930 to 2018 in 17 watersheds revealed that the magnitude of flows is approximately twice as low on the north shore as it is on the south shore south of 47° N. This difference is explained by three main factors: wetlands (negative correlation) and agricultural (positive correlation) surface area, and summer–fall total precipitation (positive correlation). As for the temporal variability of flows, the different Mann–Kendall statistical tests showed a significant increase in flows due to increased rainfall. The increase of flows was more widespread on the north shore than on the south because the storage capacity of wetlands and other water bodies does not change over time to store excess rainfall. On the south shore, the increase in flows over time is limited due to the significant reduction in agricultural areas since the modernization of agriculture. This reduction favored infiltration to the detriment of runoff.
-
The objective of this study is to analyze the temporal variability in water levels of Lake Mégantic (27.4 km2) during the period 1920–2020 in relation to anthropogenic and natural factors on the one hand, and its impact on the intensity and frequency of heavy flooding (recurring floods ≥ 10 years) of the Chaudière River of which it is the source, on the other hand. The application of four different Mann–Kendall tests showed a significant decrease in lake water levels during this period. The Lombard test revealed two breaks in the average daily maximum and average water levels, but only one break in the average daily minimum water levels. The first shift, which was smoothed, occurred between 1957 and 1963. It was caused by the demolition in 1956 of the first dam built in 1893 and the significant storage of water in the dams built upstream of the lake between 1956 and 1975. The second shift, which was rather abrupt, occurred between 1990 and 1993. It was caused by the voluntary and controlled lowering of the lake’s water levels in 1993 to increase the surface area of the beaches for recreational purposes. However, despite this influence of anthropogenic factors on this drop in water levels, they are negatively correlated with the global warming climate index. It is therefore a covariation, due to anthropogenic factors whose impacts are exerted at different spatial scales, without a physical causal link. However, the winter daily minimum water levels, whose temporal variability has not been influenced by anthropogenic activities, are positively correlated with the NAO and AO indices, but negatively with PDO. Finally, since the transformation of Lake Mégantic into a reservoir following the construction of the Mégantic dam in 1893 and 1973 to control heavy flooding in the Chaudière River, all recurrent floods ≥ 10 years have completely disappeared in the section of this river located downstream of Lake Mégantic. However, the disappearance of these floods and the drop in water levels of Lake Mégantic have not significantly impacted the stationarity in the flow series of the Chaudière River since 1920.
-
Abstract Extreme precipitation events can have a significant impact on the environment, agriculture, economy and safety, making close monitoring of their short‐ and long‐term trends essential for the development of effective mitigation and adaptation strategies. In this study, we analysed 16 in situ observation datasets from four different climate zones in Algeria, spanning from 1969 to 2021. The trend analysis was conducted using the original Mann–Kendall test and seven modified tests to eliminate the effects of short‐term persistence. Our findings reveal a significant increasing trend of extreme precipitation variability for most stations in the Warm Mediterranean climate zone, except for the Consecutive dry days index, which showed a negative trend for the same zone, while stations in the Cold/Warm semi‐arid climate and Cold desert climate (Bwk) zones showed a decreasing trend. Additionally, all index series with significant long‐term trends were affected by a significant shift in their means, which was confirmed by both the Lombard and Pettitt tests. However, when we used the modified MPT and the test eliminating the effects of long‐term persistence, the significance of the shifts and the trend decreased. Our results suggest that while extreme precipitation events have been increasing in some parts of Algeria; the trend may not be statistically significant in the long‐run, indicating the necessity of revisiting and refreshing the findings of previous studies for a more current perspective.
-
Extreme precipitation events play a crucial role in shaping the vulnerability of regions like Algeria to the impacts of climate change. To delve deeper into this critical aspect, this study investigates the changing patterns of extreme precipitation across five sub-regions of Algeria using data from 33 model simulations provided by the NASA Earth Exchange Global Daily Downscaled Climate Projections (NEX-GDDP-CMIP6). Our analysis reveals a projected decline in annual precipitation for four of these regions, contrasting with an expected increase in desert areas where annual precipitation levels remain low, typically not exceeding 120 mm. Furthermore, key precipitation indices such as maximum 1-day precipitation (Rx1day) and extremely wet-day precipitation (R99p) consistently show upward trends across all zones, under both SSP245 and SSP585 scenarios. However, the number of heavy precipitation days (R20mm) demonstrates varied trends among zones, exhibiting stable fluctuations. These findings provide valuable foresight into future precipitation patterns, offering essential insights for policymakers and stakeholders. By anticipating these changes, adaptive strategies can be devised to mitigate potential climate change impacts on crucial sectors such as agriculture, flooding, water resources, and drought.