Votre recherche
Résultats 5 ressources
-
Snow is the main source of streamflow in temperate regions characterized by very cold and snowy winters. Due to global warming, these regions are experiencing a significant decrease in snowfall. The main objective of this study is to analyze the impacts of snowfall on the spatio-temporal variability of mean annual flows (MAFs) of 17 rivers, grouped into three hydroclimatic regions, from 1930 to 2019 in southern Quebec. In terms of spatial variability, snowfall is the variable most correlated with MAFs (positive correlation), followed by drainage density (positive correlation) and wetland surface areas (negative correlation). Due to the influence of these three factors, MAF values are generally higher in the most agricultural watersheds of the southeastern hydroclimatic region on the south shore than in the less agricultural watersheds of the southwestern hydroclimatic region on the north shore of the St. Lawrence River. As for temporal variability, the four statistical tests applied to the hydrological series detect no significant downward trend in MAFs, despite having reduced snowfall. Instead, they suggest an evolution toward an increase in mean annual flows, as a result of increased rainfall due to the increase in temperature. This evolution is more pronounced on the north shore than on the south shore, likely due to the presence of wetlands and others water bodies, whose runoff water storage capacity does not change over time to be able to store the surplus of the quantity of water brought by the increase in rain.
-
Reduced snow storage has been associated with lower river low flows in mountainous catchments, exacerbating summer hydrological droughts. However, the impacts of changing snow storage on summer low flows in low-elevation, snow-affected catchments has not yet been investigated. To address this knowledge gap, the dominant hydroclimate predictors of summer low flows were first identified through correlation analysis in 12 tributary catchments of the St. Lawrence River in the Canadian province of Quebec. The correlation results show that summer low flow is most sensitive to summer rainfall, while maximum snow water equivalent (SWE) is the dominant winter preconditioning factor of low flows, particularly at the end of summer. The multivariate sensitivity of summer low flow to hydroclimate predictors was then quantified by multilevel regression analysis, considering also the effect of catchment biophysical attributes. Accumulated rainfall since snow cover disappearance was found to be the prime control on summer low flow, as expected for the humid climate of Quebec. Maximum SWE had a secondary but significant positive influence on low flow, sometimes on the same order as the negative effect of evapotranspiration losses. As a whole, our results show that in these low elevation catchments, thicker winter snowpacks that last longer and melt slower in the spring are conducive to higher low flows in the following summer. More rugged and forested catchments with coarser soils were found to have higher summer low flows than flatter agricultural catchments with compacted clayed soils. This emphasizes the role of soils and geology on infiltration, aquifer recharge and related river baseflow in summer. Further climate warming and snowpack depletion could reduce future summer low flow, exacerbating hydrological droughts and impacting ecosystems integrity and ecological services.
-
Abstract This study compares the impacts of climate, agriculture and wetlands on the spatio-temporal variability of seasonal daily minimum flows during the period 1930–2019 in 17 watersheds of southern Quebec (Canada). In terms of spatial variability, correlation analysis revealed that seasonal daily minimum flows were mainly negatively correlated with the agricultural surface area in watersheds in spring, summer and fall. In winter, these flows were positively correlated with the wetland surface area and March temperatures but negatively correlated with snowfall. During all four seasons, spatial variability was characterized by higher daily minimum flow values on the north shore (smaller agricultural surface area and larger wetland surface area) than those on the south shore. As for temporal variability, the application of six tests of the long-term trend analysis showed that most agricultural watersheds are characterized by a significant increase in flows during the four seasons due to the reduction in agricultural area, thus favoring water infiltration, and increased rainfall in summer and fall. On the other hand, the reduction in the snowfall resulted in a reduction in summer daily minimum flows observed in several less agricultural watersheds.