Votre recherche
Résultats 5 ressources
-
Abstract This paper focuses on evaluating the uncertainty of three common regionalization methods for predicting continuous streamflow in ungauged basins. A set of 268 basins covering 1.6 million km 2 in the province of Quebec was used to test the regionalization strategies. The multiple linear regression, spatial proximity, and physical similarity approaches were evaluated on the catchments using a leave‐one‐out cross‐validation scheme. The lumped conceptual HSAMI hydrological model was used throughout the study. A bootstrapping method was chosen to further estimate uncertainty due to parameter set selection for each of the parameter set/regionalization method pairs. Results show that parameter set selection can play an important role in regionalization method performance depending on the regionalization methods (and their variants) used and that equifinality does not contribute significantly to the overall uncertainty witnessed throughout the regionalization methods applications. Regression methods fail to consistently assign behavioral parameter sets to the pseudoungauged basins (i.e., the ones left out). Spatial proximity and physical similarity score better, the latter being the best. It is also shown that combining either physical similarity or spatial proximity with the multiple linear regression method can lead to an even more successful prediction rate. However, even the best methods were shown to be unreliable to an extent, as successful prediction rates never surpass 75%. Finally, this paper shows that the selection of catchment descriptors is crucial to the regionalization strategies' performance and that for the HSAMI model, the optimal number of donor catchments for transferred parameter sets lies between four and seven. , Key Points Uncertainty can be limited in regionalization Physical similarity method is best, followed by spatial proximity Regression‐augmented methods can yield better performance
-
The potential impacts of floods are of significant concern to our modern society raising the need to identify and quantify all the uncertainties that can impact their simulations. Climate simulations at finer spatial resolutions are expected to bring more confidence in these hydrological simulations. However, the impact of the increasing spatial resolutions of climate simulations on floods simulations has to be evaluated. To address this issue, this paper assesses the sensitivity of summer–fall flood simulations to the Canadian Regional Climate Model (CRCM) grid resolution. Three climate simulations issued from the fifth version of the CRCM (CRCM5) driven by the ERA-Interim reanalysis at 0.44°, 0.22° and 0.11° resolutions are analysed at a daily time step for the 1981–2010 period. Raw CRCM5 precipitation and temperature outputs are used as inputs in the simple lumped conceptual hydrological model MOHYSE to simulate streamflows over 50 Quebec (Canada) basins. Summer–fall flooding is analysed by estimating four flood indicators: the 2-year, 5-year, 10-year and 20-year return periods from the CRCM5-driven streamflows. The results show systematic impacts of spatial resolution on CRCM5 outputs and seasonal flood simulations. Floods simulated with coarser climate datasets present smaller peak discharges than those simulated with the finer climate outputs. Smaller catchments show larger sensitivity to spatial resolution as more detail can be obtained from the finer grids. Overall, this work contributes to understanding the sensitivity of streamflow modelling to the climate model’s resolution, highlighting yet another uncertainty source to consider in hydrological climate change impact studies.