Votre recherche
Résultats 3 ressources
-
Abstract Currently, there are a large number of diverse climate datasets in existence, which differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given application is therefore not a simple task. This study compares nine global/near-global precipitation datasets and three global temperature datasets over 3138 North American catchments. The chosen datasets all meet the minimum requirement of having at least 30 years of available data, so they could all potentially be used as reference datasets for climate change impact studies. The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-CDR V1R1), four reanalysis products (NCEP CFSR, JRA55, ERA-Interim, and ERA5), and one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based gridded precipitation and temperature datasets were combined as the reference dataset for this intercomparison study. To assess dataset performance, all combinations were used as inputs to a lumped hydrological model. The results showed that all temperature datasets performed similarly, albeit with the CPC performance being systematically inferior to that of the other three. Significant differences in performance were, however, observed between the precipitation datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis, and satellite datasets categories. Results also showed that gauge-based datasets should be preferred in regions with good weather network density, but CHIRPS and ERA5 would be good alternatives in data-sparse regions.
-
Abstract During spring 2011, an extreme flood occurred along the Richelieu River located in southern Quebec, Canada. The Richelieu River is the last section of the complex Richelieu basin, which is composed of the large Lake Champlain located in a valley between two large mountains. Previous attempts in reproducing the Richelieu River flow relied on the use of simplified lumped models and showed mixed results. In order to prepare a tool to assess accurately the change of flood recurrences in the future, a state‐of‐the‐art distributed hydrological model was applied over the Richelieu basin. The model setup comprises several novel methods and data sets such as a very high resolution river network, a modern calibration technique considering the net basin supply of Lake Champlain, a new optimization algorithm, and the use of an up‐to‐date meteorological data set to force the model. The results show that the hydrological model is able to satisfactorily reproduce the multiyear mean annual hydrograph and the 2011 flow time series when compared with the observed river flow and an estimation of the Lake Champlain net basin supply. Many factors, such as the quality of the meteorological forcing data, that are affected by the low density of the station network, the steep terrain, and the lake storage effect challenged the simulation of the river flow. Overall, the satisfactory validation of the hydrological model allows to move to the next step, which consists in assessing the impacts of climate change on the recurrence of Richelieu River floods. , Plain Language Summary In order to study the 2011 Richelieu flood and prepare a tool capable of estimating the effects of climate change on the recurrence of floods, a hydrological model is applied over the Richelieu basin. The application of a distributed hydrological model is useful to simulate the flow of all the tributaries of the Richelieu basin. This new model setup stands out from past models due to its distribution in several hydrological units, its high‐resolution river network, the calibration technique, and the high‐resolution weather forcing data set used to drive the model. The model successfully reproduced the 2011 Richelieu River flood and the annual hydrograph. The simulation of the Richelieu flow was challenging due to the contrasted elevation of the Richelieu basin and the presence of the large Lake Champlain that acts as a reservoir and attenuates short‐term fluctuations. Overall, the application was deemed satisfactory, and the tool is ready to assess the impacts of climate change on the recurrence of Richelieu River floods. , Key Points An advanced high‐resolution distributed hydrological model is applied over a U.S.‐Canada transboundary basin The simulated net basin supply of Lake Champlain and the Richelieu River discharge are in good agreement with observations of the 2011 flood The flow simulation is challenging due to the topographic and meteorological complexities of the basin and uncertainties in the observations
-
Abstract. Model intercomparison studies are carried out to test and compare the simulated outputs of various model setups over the same study domain. The Great Lakes region is such a domain of high public interest as it not only resembles a challenging region to model with its transboundary location, strong lake effects, and regions of strong human impact but is also one of the most densely populated areas in the USA and Canada. This study brought together a wide range of researchers setting up their models of choice in a highly standardized experimental setup using the same geophysical datasets, forcings, common routing product, and locations of performance evaluation across the 1×106 km2 study domain. The study comprises 13 models covering a wide range of model types from machine-learning-based, basin-wise, subbasin-based, and gridded models that are either locally or globally calibrated or calibrated for one of each of the six predefined regions of the watershed. Unlike most hydrologically focused model intercomparisons, this study not only compares models regarding their capability to simulate streamflow (Q) but also evaluates the quality of simulated actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE). The latter three outputs are compared against gridded reference datasets. The comparisons are performed in two ways – either by aggregating model outputs and the reference to basin level or by regridding all model outputs to the reference grid and comparing the model simulations at each grid-cell. The main results of this study are as follows: The comparison of models regarding streamflow reveals the superior quality of the machine-learning-based model in the performance of all experiments; even for the most challenging spatiotemporal validation, the machine learning (ML) model outperforms any other physically based model. While the locally calibrated models lead to good performance in calibration and temporal validation (even outperforming several regionally calibrated models), they lose performance when they are transferred to locations that the model has not been calibrated on. This is likely to be improved with more advanced strategies to transfer these models in space. The regionally calibrated models – while losing less performance in spatial and spatiotemporal validation than locally calibrated models – exhibit low performances in highly regulated and urban areas and agricultural regions in the USA. Comparisons of additional model outputs (AET, SSM, and SWE) against gridded reference datasets show that aggregating model outputs and the reference dataset to the basin scale can lead to different conclusions than a comparison at the native grid scale. The latter is deemed preferable, especially for variables with large spatial variability such as SWE. A multi-objective-based analysis of the model performances across all variables (Q, AET, SSM, and SWE) reveals overall well-performing locally calibrated models (i.e., HYMOD2-lumped) and regionally calibrated models (i.e., MESH-SVS-Raven and GEM-Hydro-Watroute) due to varying reasons. The machine-learning-based model was not included here as it is not set up to simulate AET, SSM, and SWE. All basin-aggregated model outputs and observations for the model variables evaluated in this study are available on an interactive website that enables users to visualize results and download the data and model outputs.