Votre recherche
Résultats 31 ressources
-
-
Abstract. An increasing number of studies have shown the prowess of long short-term memory (LSTM) networks for hydrological modelling and forecasting. One drawback of these methods is the requirement for large amounts of training data to properly reproduce streamflow events. For maximum annual streamflow, this can be problematic since they are by definition less common than middle or low flows, leading to under-representation in the model's training set. This study investigates six methods to improve the peak-streamflow simulation skill of LSTM models used for flood frequency analysis (FFA) in ungauged catchments. These include adding meteorological data variables, providing streamflow simulations from a distributed hydrological model, oversampling peak-streamflow events, adding multi-head attention mechanisms, adding data from a large set of “donor” catchments, and combining some of these elements in a single model. Furthermore, results are compared to those obtained by the distributed hydrological model HYDROTEL. The study is performed on 88 catchments in the province of Quebec using a leave-one-out cross-validation implementation, and an FFA is applied using observations, as well as model simulations. Results show that LSTM-based models are able to simulate peak streamflow as well as (for a simple LSTM model implementation) or better than (with hybrid LSTM–hydrological model implementations) the distributed hydrological model. Multiple pathways forward to further improve the LSTM-based model's ability to predict peak streamflow are provided and discussed.
-
Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.
-
Abstract. Model intercomparison studies are carried out to test and compare the simulated outputs of various model setups over the same study domain. The Great Lakes region is such a domain of high public interest as it not only resembles a challenging region to model with its transboundary location, strong lake effects, and regions of strong human impact but is also one of the most densely populated areas in the USA and Canada. This study brought together a wide range of researchers setting up their models of choice in a highly standardized experimental setup using the same geophysical datasets, forcings, common routing product, and locations of performance evaluation across the 1×106 km2 study domain. The study comprises 13 models covering a wide range of model types from machine-learning-based, basin-wise, subbasin-based, and gridded models that are either locally or globally calibrated or calibrated for one of each of the six predefined regions of the watershed. Unlike most hydrologically focused model intercomparisons, this study not only compares models regarding their capability to simulate streamflow (Q) but also evaluates the quality of simulated actual evapotranspiration (AET), surface soil moisture (SSM), and snow water equivalent (SWE). The latter three outputs are compared against gridded reference datasets. The comparisons are performed in two ways – either by aggregating model outputs and the reference to basin level or by regridding all model outputs to the reference grid and comparing the model simulations at each grid-cell. The main results of this study are as follows: The comparison of models regarding streamflow reveals the superior quality of the machine-learning-based model in the performance of all experiments; even for the most challenging spatiotemporal validation, the machine learning (ML) model outperforms any other physically based model. While the locally calibrated models lead to good performance in calibration and temporal validation (even outperforming several regionally calibrated models), they lose performance when they are transferred to locations that the model has not been calibrated on. This is likely to be improved with more advanced strategies to transfer these models in space. The regionally calibrated models – while losing less performance in spatial and spatiotemporal validation than locally calibrated models – exhibit low performances in highly regulated and urban areas and agricultural regions in the USA. Comparisons of additional model outputs (AET, SSM, and SWE) against gridded reference datasets show that aggregating model outputs and the reference dataset to the basin scale can lead to different conclusions than a comparison at the native grid scale. The latter is deemed preferable, especially for variables with large spatial variability such as SWE. A multi-objective-based analysis of the model performances across all variables (Q, AET, SSM, and SWE) reveals overall well-performing locally calibrated models (i.e., HYMOD2-lumped) and regionally calibrated models (i.e., MESH-SVS-Raven and GEM-Hydro-Watroute) due to varying reasons. The machine-learning-based model was not included here as it is not set up to simulate AET, SSM, and SWE. All basin-aggregated model outputs and observations for the model variables evaluated in this study are available on an interactive website that enables users to visualize results and download the data and model outputs.