Votre recherche
Résultats 6 ressources
-
There is currently much discussion as to whether probabilistic (top–down) or possibilistic (bottom–up) approaches are the most appropriate to estimate potential future climate impacts. In a context of deep uncertainty, such as future climate, bottom-up approaches aimed at assessing the sensitivity and vulnerability of systems to changes in climate variables have been gaining ground. A refined framework is proposed here (in terms of coherence, structure, uncertainty, and results analysis) that adopts the scenario–neutral method of the bottom–up approach, but also draws on some elements of the top–down approach. What better guides the task of assessing the potential hydroclimatological impacts of changing climatic conditions in terms of the sensitivity of the systems, differential analysis of climatic stressors, paths of change, and categorized response of the scenarios: past, changing, compensatory, and critical condition. The results revealed a regional behavior (of hydroclimatology, annual water balances, and snow) and a differential behavior (of low flows). We find, among others, the plausible scenario in which increases in temperature and precipitation would generate the same current mean annual flows, with a reduction of half of the snow, a decrease in low flows (significant, but differentiated between basins), and a generalized increase in dry events.
-
A flood frequency analysis is conducted using instantaneous peak flow data over a hydrologic sub-region of southern Québec following three distinct methodological frameworks. First, the analysis is conducted locally using available instantaneous peak flow data. Second, the analysis is conducted locally using daily peak flow data processed to consider the peak flow effect. Third, a regional frequency analysis is conducted pooling all available instantaneous peak flow data over the study area. Results reveal a notable diversity in the resulting recurrence peak flow estimates and related uncertainties from one analysis to another. Expert judgement appears essential to arbitrate which alternative should be operated considering a specific context of application for flood plain delineation. Pros and cons for each approach are discussed. We finally encourage the use of a diversity of approaches to provide a robust assessment of uncertainty affecting peak flow estimates.
-
Given that flooding episodes are occurring at a greater rate due to climate change, individuals must adopt certain adaptation behaviors to prevent or mitigate the anticipated or negative impact of such events. However, few studies have assessed if and how households and individuals have actually taken action in this regard. Because some individual beliefs can be linked to facilitating factors and barriers to action, a better understanding of the adoption of adaptive behaviors requires a combined analysis of individual psychosocial factors. The purpose of this study was to develop a better understanding of the reasons underlying the adoption of behaviors related to structural adaptation to flooding by people living in or near flood-prone areas in the Province of Québec (Canada). Results of a series of structural equation modeling showed that behavioral, normative and control beliefs were all significant predictors of the respondents' intention to adopt structural flood protective behaviors, with normative beliefs being the strongest. By identifying the best psychosocial predictors of the adoption of such behaviors, the results of this study provide valuable insights regarding the most effective factors to be used in public health messages to promote the adoption of behaviors related to structural adaptation to flooding.
-
Abstract Climate change is predicted to increase the frequency and intensity of floods in the province of Quebec, Canada. Therefore, in 2015, to better monitor the level of adaptation to flooding of Quebec residents living in or near a flood-prone area, the Quebec Observatory of Adaptation to Climate Change developed five indices of adaptation to flooding, according to the chronology of events. The present study was conducted 4 years later and is a follow-up to the 2015 one. Two independent samples of 1951 (2015) and 974 (2019) individuals completed a questionnaire on their adoption (or non-adoption) of flood adaptation behaviors, their perception of the mental and physical impacts of flooding, and their knowledge of the fact that they lived in a flood-prone area. The results of the study demonstrated the measurement invariance of the five indices across two different samples of people over time, ensuring that the differences (or absence of differences) observed in flood-related adaptive behaviors between 2015 and 2019 were real and not due to measurement errors. They also showed that, overall, Quebeckers’ flood-related adaptive behaviors have not changed considerably since 2015, with adaptation scores being similar in 2019 for four of the five flood indices. Moreover, the results indicated an increase in self-reported physical and mental health issues related to past flooding events, as well as a larger proportion of people having consulted a health professional because of these problems. Thus, this study provides a better understanding of flood adaptation in Quebec over the past 4 years and confirms that the five adaptive behavior indices developed in 2015 are appropriate tools for monitoring changes in flood adaptation in the province. Finally, our results showed that little has changed in Quebeckers’ adoption of adaptive behaviors, highlighting the need for awareness raising in order to limit the impacts that climate change will have on the population.