Votre recherche
Résultats 3 ressources
-
Abstract Thresholds in precipitation‐runoff relationships have been observed in numerous studies using scatter plots comparing meteorological factors and hydrologic response metrics. Most thresholds reported in the literature have been identified from relationships between meteorological factors that quantify volumes or depths of water (e.g., total event rainfall) and metrics capturing hydrologic response magnitude (e.g., runoff ratio), with a strong emphasis on hillslopes and catchments in temperate humid environments. Knowledge gaps, however, remain regarding the ubiquity of hydrologic thresholds across different climatic environments and different meteorological factors that affect different response metrics. This study therefore aimed to evaluate relationships for a wide range of meteorological factors and response metrics derived from event‐scale rainfall‐runoff analysis for 21 sites spanning seven contrasting geographic areas. Specifically, meteorological factors quantifying rainfall depth, rainfall intensity, and hydrologic abstractions related to evapotranspiration were considered, along with response metrics that describe response timing and response magnitude, leading to 4,557 relationships being evaluated. While rainfall depth thresholds were observed for most sites, rainfall intensity thresholds were also observed. Additionally, threshold behavior was shown to be sensitive to antecedent conditions over specific durations of time preceding a rainfall‐runoff event. The large number of relationships evaluated in this study allowed for the development of a typology of threshold dynamics and the formulation of hypotheses about dominant hydrological processes. This typology may not only promote standardized threshold descriptions but also make intersite comparisons of nonlinear rainfall‐runoff behavior easier. , Key Points While water volume thresholds dominate the literature, rainfall intensity thresholds were observed even at sites with humid climates Threshold behavior is sensitive to antecedent conditions over specific durations of time preceding a rainfall‐runoff event A newly proposed typology of threshold dynamics may be used toward standardized threshold descriptions and intersite comparisons
-
Phosphorus (P) mobilization in agricultural landscapes is regulated by both hydrologic (transport) and biogeochemical (supply) processes interacting within soils; however, the dominance of these controls can vary spatially and temporally. In this study, we analyzed a 5‐yr dataset of stormflow events across nine agricultural fields in the lower Great Lakes region of Ontario, Canada, to determine if edge‐of‐field surface runoff and tile drainage losses (total and dissolved reactive P) were limited by transport mechanisms or P supply. Field sites ranged from clay loam, silt loam, to sandy loam textures. Findings indicate that biogeochemical processes (P supply) were more important for tile drain P loading patterns (i.e., variable flow‐weighted mean concentrations ([ C f ]) across a range of flow regimes) relative to surface runoff, which trended toward a more chemostatic or transport‐limited response. At two sites with the same soil texture, higher tile [ C f ] and greater transport limitations were apparent at the site with higher soil available P (STP); however, STP did not significantly correlate with tile [ C f ] or P loading patterns across the nine sites. This may reflect that the fields were all within a narrow STP range and were not elevated in STP concentrations (Olsen‐P, ≤25 mg kg −1 ). For the study sites where STP was maintained at reasonable concentrations, hydrology was less of a driving factor for tile P loadings, and thus management strategies that limit P supply may be an effective way to reduce P losses from fields (e.g., timing of fertilizer application). Core Ideas We used metrics to evaluate controls on edge‐of‐field phosphorus losses. We examined a 5‐yr database of stormflow events (all seasons, including winter). Tile P runoff trended toward being more supply limited than surface runoff.
-
Abstract Watershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management.