Votre recherche
Résultats 5 ressources
-
Abstract The mean transit time (MTT) is an important descriptor of water storage and release dynamics in watersheds. Although MTT studies are numerous for many regions around the world, they are rare for prairie watersheds where seasonally cold or dry conditions require adequate methodological choices towards MTT estimation, especially regarding the handling of sparse data records and tracer selection. To examine the impact of such choices, we used timeseries of δ 18 O and δ 2 H from two contrasted years (2014 and 2015) and relied on two metrics and two modelling methods to infer MTTs in prairie watersheds. Our focus was on nested outlets with different drainage areas, geologies, and known run‐off generation mechanisms. The damping ratio and young water fraction (i.e., the fraction of streamflow with transit times lesser than 3 months) metrics, as well as the sine‐wave modelling and time‐based convolution modelling methods, were applied to year‐specific data. Results show that young water fractions and modelled MTT values were, respectively, larger and smaller in 2014, which was a wet year, compared with that in 2015. In 2014, most outlets had young water fractions larger than 0.5 and MTT values lesser than 6 months. The damping ratio, young water fraction, and sine‐wave modelling methods led to convergent conclusions about watershed water storage and release dynamics for some of the monitored sites. Contrasting results were, however, obtained when the same method was applied using δ 2 H instead of δ 18 O, due to differing evaporation fractionation, or when the time‐based convolution modelling method was used. Some methods also failed to provide any robust results during the dry year (i.e., 2015), highlighting the difficulty in inferring MTTs when data are sparse due to intermittent streamflow. This study therefore allowed the formulation of empirical recommendations for MTT estimation in prairie environments as a function of data availability and antecedent wetness conditions.
-
Abstract Numerous studies have examined the impact of prairie pothole wetlands on overall watershed dynamics. However, very few have looked at individual wetland dynamics across a continuum of alteration status using subdaily hydrometric data. Here, the importance of surface and subsurface water storage dynamics in the prairie pothole region was documented by (1) characterizing surface fill–spill dynamics in intact and consolidated wetlands; (2) quantifying water‐table fluctuations and the occurrence of overland flow downslope of fully drained wetlands; (3) assessing the relation (or lack thereof) between intact, consolidated or drained wetland hydrological behaviour, and stream dynamics; and (4) relating wetland hydrological behaviour to landscape characteristics. Focus was on southwestern Manitoba, Canada, where ten intact, three consolidated, seven fully drained wetlands, and a nearby creek were monitored over two years with differing antecedent storage conditions. Hourly hydrological time series were used to compute behavioural metrics reflective of year‐specific and season‐specific wetland dynamics. Behavioural metrics were then correlated to wetland physical characteristics to identify landscape controls on wetland hydrology. Predictably, more frequent spillage or overland flow was observed when antecedent storage was high. Consolidated wetlands had a high degree of water permanence and a greater frequency of fill–spill events than intact wetlands. Shallow and highly responsive water tables were present downslope of fully drained wetlands. Potential wetland–stream connectivity was also inferred via time‐series analysis, while some landscape characteristics (e.g., wetland surface, catchment area, and storage volume) strongly correlated with wetland behavioural metrics. The nonstationarity of dominant processes was, however, evident through the lack of consistent correlations across seasons. This, therefore, highlights the importance of combining multiyear high‐frequency hydrometric data and detailed landscape analyses in wetland hydrology studies.
-
Abstract We describe a collection of aquatic and wetland habitats in an inland landscape, and their occurrence within a terrestrial matrix, as a “freshwater ecosystem mosaic” (FEM). Aquatic and wetland habitats in any FEM can vary widely, from permanently ponded lakes, to ephemerally ponded wetlands, to groundwater‐fed springs, to flowing rivers and streams. The terrestrial matrix can also vary, including in its influence on flows of energy, materials, and organisms among ecosystems. Biota occurring in a specific region are adapted to the unique opportunities and challenges presented by spatial and temporal patterns of habitat types inherent to each FEM. To persist in any given landscape, most species move to recolonize habitats and maintain mixtures of genetic materials. Species also connect habitats through time if they possess needed morphological, physiological, or behavioral traits to persist in a habitat through periods of unfavorable environmental conditions. By examining key spatial and temporal patterns underlying FEMs, and species‐specific adaptations to these patterns, a better understanding of the structural and functional connectivity of a landscape can be obtained. Fully including aquatic, wetland, and terrestrial habitats in FEMs facilitates adoption of the next generation of individual‐based models that integrate the principles of population, community, and ecosystem ecology. , Research Impact Statement : Fully including aquatic, wetland, and terrestrial habitats facilitates adoption of next‐generation, individual‐based, models that integrate principles of population, community, and ecosystem ecology.
-
Phosphorus (P) mobilization in agricultural landscapes is regulated by both hydrologic (transport) and biogeochemical (supply) processes interacting within soils; however, the dominance of these controls can vary spatially and temporally. In this study, we analyzed a 5‐yr dataset of stormflow events across nine agricultural fields in the lower Great Lakes region of Ontario, Canada, to determine if edge‐of‐field surface runoff and tile drainage losses (total and dissolved reactive P) were limited by transport mechanisms or P supply. Field sites ranged from clay loam, silt loam, to sandy loam textures. Findings indicate that biogeochemical processes (P supply) were more important for tile drain P loading patterns (i.e., variable flow‐weighted mean concentrations ([ C f ]) across a range of flow regimes) relative to surface runoff, which trended toward a more chemostatic or transport‐limited response. At two sites with the same soil texture, higher tile [ C f ] and greater transport limitations were apparent at the site with higher soil available P (STP); however, STP did not significantly correlate with tile [ C f ] or P loading patterns across the nine sites. This may reflect that the fields were all within a narrow STP range and were not elevated in STP concentrations (Olsen‐P, ≤25 mg kg −1 ). For the study sites where STP was maintained at reasonable concentrations, hydrology was less of a driving factor for tile P loadings, and thus management strategies that limit P supply may be an effective way to reduce P losses from fields (e.g., timing of fertilizer application). Core Ideas We used metrics to evaluate controls on edge‐of‐field phosphorus losses. We examined a 5‐yr database of stormflow events (all seasons, including winter). Tile P runoff trended toward being more supply limited than surface runoff.