Votre recherche
Résultats 13 ressources
-
Mapping the delineation of areas that are flooded due to water control infrastructure failure is a critical issue. Practical difficulties often present challenges to the accurate and effective analysis of dam-break hazard areas. Such studies are expensive, lengthy, and require large volumes of incoming data and refined technical skills. The creation of cost-efficient geospatial tools provides rapid and inexpensive estimates of instantaneous dam-break (due to structural failure) flooded areas that complement, but do not replace, the results of hydrodynamic simulations. The current study implements a Geographic Information System (GIS) based method that can provide useful information regarding the delineation of dam-break flood-prone areas in both data-scarce environments and transboundary regions, in the absence of detailed studies. Moreover, the proposed tool enables, without advanced technical skills, the analysis of a wide number of case studies that support the prioritization of interventions, or, in emergency situations, the simulation of numerous initial hypotheses (e.g., the modification of initial water level/volume in the case of limited dam functionality), without incurring high computational time. The proposed model is based on the commonly available data for masonry dams, i.e., dam geometry (e.g., reservoir capacity, dam height, and crest length), and a Digital Elevation Model. The model allows for rapid and cost-effective dam-break hazard mapping by evaluating three components: (i) the dam-failure discharge hydrograph, (ii) the propagation of the flood, and (iii) the delineation of flood-prone areas. The tool exhibited high accuracy and reliability in the identification of hypothetical dam-break flood-prone areas when compared to the results of traditional hydrodynamic approaches, as applied to a dam in Basilicata (Southern Italy). In particular, the over- and under-estimation rates of the proposed tool, for the San Giuliano dam, Basilicata, were evaluated by comparing its outputs with flood inundation maps that were obtained by two traditional methods whil using a one-dimensional and a two-dimensional propagation model, resulting in a specificity value of roughly 90%. These results confirm that most parts of the flood map were correctly classified as flooded by the proposed GIS model. A sensitivity value of over 75% confirms that several zones were also correctly identified as non-flooded. Moreover, the overall effectiveness and reliability of the proposed model were evaluated, for the Gleno Dam (located in the Central Italian Alps), by comparing the results of literature studies concerning the application of monodimensional numerical models and the extent of the flooded area reconstructed by the available historical information, obtaining an accuracy of around 94%. Finally, the computational efficiency of the proposed tool was tested on a demonstrative application of 250 Italian arch and gravity dams. The results, when carried out using a PC, Pentium Intel Core i5 Processor CPU 3.2 GHz, 8 GB RAM, required about 73 min, showing the potential of such a tool applied to dam-break flood mapping for a large number of dams.
-
Abstract Analyzing intra-annual stream flow can reveal the main causes for runoff changes and the contributions of climate variability and human activities. For this purpose, the Mann–Kendall and cumulative rank difference (CRD) tests, and the double mass curve method, were applied to a time series of hydro-meteorological variables from 1971 to 2010 in the Tajan River basin in Iran. Results indicated that runoff changes in the wet and dry seasons after 1999 had significant respective decreasing and increasing trends, at the 0.01 confidence level, due to dam construction. In the pre-dam period (1991–1998), the results of the double mass curve method showed that climate variability and human activities contributed 57.76% and 42.24%, respectively, to the runoff decrease during the wet season. For the post-dam period (1999–2010), climate variability and anthropogenic activities contributed 24.68% and 75.32%, respectively, to the wet season runoff decrease of 116.55 mm. On the other hand, in the same period during the dry season, climate variability contributed −30.68% and human activities contributed 130.68% to the runoff increase of 41.45 mm. It is evident that runoff changes in both wet and dry seasons were mainly due to human activities associated with dam construction to meet water supply demands for agriculture.
-
In this editorial, the authors (and guest editors) introduce the Special Issue titled Understanding Game-based Approaches for Improving Sustainable Water Governance: The Potential of Serious Games to Solve Water Problems. The authors take another look at the twelve contributions, starting from the subtitle question: what is the potential? The authors summarize the insights and give directions for future research.
-
Floods are some of the most dangerous and most frequent natural disasters occurring in the northern region of Iran. Flooding in this area frequently leads to major urban, financial, anthropogenic, and environmental impacts. Therefore, the development of flood susceptibility maps used to identify flood zones in the catchment is necessary for improved flood management and decision making. The main objective of this study was to evaluate the performance of an Evidential Belief Function (EBF) model, both as an individual model and in combination with Logistic Regression (LR) methods, in preparing flood susceptibility maps for the Haraz Catchment in the Mazandaran Province, Iran. The spatial database created consisted of a flood inventory, altitude, slope angle, plan curvature, Topographic Wetness Index (TWI), Stream Power Index (SPI), distance from river, rainfall, geology, land use, and Normalized Difference Vegetation Index (NDVI) for the region. After obtaining the required information from various sources, 151 of 211 recorded flooding points were used for model training and preparation of the flood susceptibility maps. For validation, the results of the models were compared to the 60 remaining flooding points. The Receiver Operating Characteristic (ROC) curve was drawn, and the Area Under the Curve (AUC) was calculated to obtain the accuracy of the flood susceptibility maps prepared through success rates (using training data) and prediction rates (using validation data). The AUC results indicated that the EBF, EBF from LR, EBF-LR (enter), and EBF-LR (stepwise) success rates were 94.61%, 67.94%, 86.45%, and 56.31%, respectively, and the prediction rates were 94.55%, 66.41%, 83.19%, and 52.98%, respectively. The results showed that the EBF model had the highest accuracy in predicting flood susceptibility within the catchment, in which 15% of the total areas were located in high and very high susceptibility classes, and 62% were located in low and very low susceptibility classes. These results can be used for the planning and management of areas vulnerable to floods in order to prevent flood-induced damage; the results may also be useful for natural disaster assessment.