Votre recherche
Résultats 7 ressources
-
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors. © 2025 by the authors.
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
Abstract It is undeniable that coastal regions worldwide are facing unprecedented damages from catastrophic floods attributable to storm-tide (tidal) and extreme rainfall (pluvial). For flood-risk assessment, although recognizing compound impact of these drivers is a conventional practice, the marginal/individual impacts cannot be overlooked. In this letter, we propose a new measure, Tide-Rainfall Flood Quotient (TRFQ), to quantify the driver-specific flood potential of a coastal region arising from storm-tide or rainfall. A set of inundation and hazard maps are derived through a series of numerical and hydrodynamic flood model simulations comprising of design rainfall and design storm-tide. These experiments are demonstrated on three different geographically diverse flood-affected coastal regions in India. The new measure throws light on existing knowledge gaps on the propensity of coastal flooding induced by the marginal/individual contribution of storm-tide and rainfall. It shall prove useful in rationalizing long-term flood management strategies customizable for storm-tide and pluvial dominated global coastal regions.
-
Snowmelt dominated regions are receiving increasing attention due to their noticeably rapid response to ongoing climate change, which raises concerns about the altered hydrological risks under climate change scenarios. This study aims to assess the climate change impacts on hydrology over two contrasted catchments in southern Québec: Acadie River and Montmorency River catchments. These river catchments represent two predominant landscapes of the St. Lawrence River watershed; an intensive farming landscape in the south shore lowlands and the forested landscape on the Canadian Shield on the north shore, respectively. In this study, a physically based hydrological model has been developed using the Cold Regions Hydrological Model (CRHM) for both of the catchments. The hydrological model outputs showed that we were able to simulate snow surveys and discharge measurements with a reasonable accuracy for both catchments. The acceptable performance of the model along with the strong physical basis of structure suggested that this model could be used for climate change sensitivity simulations. Based on the climate scenarios reviewed, a temperature increase up to 8°C and an increase in total precipitation up to 20% were analysed for both of the catchments. Both catchments were found to be sensitive to climate change, however the degree of sensitivity was found to be catchment specific. Snow processes in the Acadie River catchment were simulated to be more sensitive to warming than in the Montmorency River catchment. In case of 2°C warming, reduction in peak SWE was not be able to be compensated even by increased precipitation scenario. Given that, the Acadie River has already a mixed flow regime, even if 2°C warming is combined with an increase in precipitation, pluvial regime kept becoming more dominant, resulting in higher peaks of rain events. On the other hand, even 3°C of warming did not modify the flow regime of the Montmorency River. While there is shift towards earlier peak spring flows in both catchments, the shift was found to be more pronounced in the Acadie River. An earlier occurrence of snowmelt floods and an overall increase in winter streamflow during winter have been simulated for both catchments, which calls for renewed assessments of existing water supply and flood risk management strategies.
-
This study presents the first nationwide spatial assessment of flood risk to identify social vulnerability and flood exposure hotspots that support policies aimed at protecting high-risk populations and geographical regions of Canada. The study used a national-scale flood hazard dataset (pluvial, fluvial, and coastal) to estimate a 1-in-100-year flood exposure of all residential properties across 5721 census tracts. Residential flood exposure data were spatially integrated with a census-based multidimensional social vulnerability index (SoVI) that included demographic, racial/ethnic, and socioeconomic indicators influencing vulnerability. Using Bivariate Local Indicators of Spatial Association (BiLISA) cluster maps, the study identified geographic concentration of flood risk hotspots where high vulnerability coincided with high flood exposure. The results revealed considerable spatial variations in tract-level social vulnerability and flood exposure. Flood risk hotspots belonged to 410 census tracts, 21 census metropolitan areas, and eight provinces comprising about 1.7 million of the total population and 51% of half-a-million residential properties in Canada. Results identify populations and the geographic regions near the core and dense urban areas predominantly occupying those hotspots. Recognizing priority locations is critically important for government interventions and risk mitigation initiatives considering socio-physical aspects of vulnerability to flooding. Findings reinforce a better understanding of geographic flood-disadvantaged neighborhoods across Canada, where interventions are required to target preparedness, response, and recovery resources that foster socially just flood management strategies.