UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Axes du RIISQ
  • 2 - enjeux de gestion et de gouvernance
Secteurs et disciplines
  • Nature et Technologie

Résultats 266 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 14
  • Page 1 de 14
Résumés
  • Performance Evaluation of Recently Constructed Ponds for Flood Mitigation in Erbil City and their Impacts on the Environment. (2025). Global NEST Journal. https://doi.org/10.30955/gnj.07248

    <p>This study investigates the performance of 35 recent ponds (which are under tendering, under construction, and finished in Erbil City), focusing on their role in flood mitigation across 11 distinct catchment areas. The total storage capacity of these ponds is approximately 9,926,394 m³, significantly enhancing the city's ability to manage stormwater runoff and reduce flood risks. The Watershed Modeling System (WMS), along with the Soil Conservation Service Curve Number (SCS-CN) method, was utilized for hydrological modeling to evaluate runoff behavior and water retention performance. Calculated Retention Capacity Ratio (RCR) values vary from as low as 21 % in the smallest system to 136 % in the Kasnazan catchment, with Chamarga similarly exceeding full capacity at 131 %. These over-capacity networks not only attenuate peak flows but also promote groundwater recharge, improve downstream water quality by trapping sediments and nutrients, and create valuable aquatic and riparian habitats. Our findings demonstrate the multifaceted benefits of high-capacity retention ponds and provide a replicable model for integrating green infrastructure into urban planning to build flood resilience and sustainable water management in rapidly urbanizing regions.</p>

    Consulter sur journal.gnest.org
  • Bista, A., Paus, K. A. H., & Seifert-Dähnn, I. (2025). Multi-objective optimization of nature-based solutions in urban stormwater management: A scoping review. Environmental Modelling & Software, 194, 106659. https://doi.org/10.1016/j.envsoft.2025.106659
    Consulter sur linkinghub.elsevier.com
  • Bista, A., Paus, K. A. H., & Seifert-Dähnn, I. (2025). Multi-objective optimization of nature-based solutions in urban stormwater management: A scoping review. Environmental Modelling & Software, 194, 106659. https://doi.org/10.1016/j.envsoft.2025.106659
    Consulter sur linkinghub.elsevier.com
  • Ahmad, M. I., Shen, Q., Boota, M. W., Liu, R., & Ma, H. (2025). Natural Disasters and Rehabilitation: Post‐Disaster Aid, Corruption, Misallocation, and Mistargeting. Sustainable Development, sd.70225. https://doi.org/10.1002/sd.70225

    ABSTRACT The increasing frequency of natural disasters, such as floods, droughts, and tsunamis, has made vulnerable communities less resilient, pushing them toward long‐term poverty and food insecurity. Effective post‐disaster rehabilitation is critical to restoring livelihoods, infrastructure, and food security. However, challenges such as corruption, misallocation, and mistargeting undermine post‐disaster aid programs. This study systematically reviews 86 peer‐reviewed articles (1990–2023) using the preferred reporting items for systematic reviews and meta‐analyses (PRISMA) protocol to investigate aid inefficiencies in disaster recovery. The findings reveal that aid often fails to reach the most affected communities, being diverted to unaffected areas due to political influence and local elites, exacerbating inequalities. Corruption further hampers institutional performance and long‐term disaster resilience efforts. The study calls for transparent, accountable, and inclusive strategies for aid distribution, aligning with SDG 10 (reduced inequalities) and SDG 11 (sustainable cities and communities). Future research should focus on gender‐sensitive strategies, local governance, and technological innovations to enhance aid transparency and effectiveness.

    Consulter sur onlinelibrary.wiley.com
  • Shen, S. V. (2025). The 2021 Henan flood increased citizen demand for government-led climate change adaptation in China. Communications Earth & Environment, 6(1), 730. https://doi.org/10.1038/s43247-025-02745-9
    Consulter sur www.nature.com
  • Hill, B., Marjoribanks, T., Moore, H., Bosher, L., & Gussy, M. (2025). Market-based instruments to fund nature-based solutions for flood risk management can disproportionately benefit affluent areas. Communications Earth & Environment, 6(1), 714. https://doi.org/10.1038/s43247-025-02706-2

    Abstract Market-based instruments, including competitive tenders, are central to funding global environmental restoration and management projects. Recently, tenders have been utilised to fund Nature-based Solutions schemes for Natural Flood Management, with the explicit purpose of achieving co-benefits; flood management and reducing inequities. While multiple studies consider the efficacy of Nature-based Solutions for tackling inequities, no prior research has quantified whether the resource allocation for these projects has been conducted equitably. We analyse two national natural flood management programmes funded through competitive tenders in England to explore who benefits by considering the characteristics of projects, including socio-economic, geographical (e.g. rurality) and flood risk dynamics. Our results suggest that inequity occurs at both the application and funding stages of Nature-based Solutions projects for flood risk management. This reflects wider international challenges of using market-based instruments for environmental resource allocation. Competitive tenders have the potential to undermine the equitable benefits of Nature-based Solutions.

    Consulter sur www.nature.com
  • Javidi Sabbaghian, R., Fereshtehpour, M., & Goli Hosseinabad, M. R. (2025). Integrated hydrologic-economic modeling for urban flood risk mitigation using SWMM, HEC-RAS, and HAZUS: a case study of the Bronx river watershed, NYC. Sustainable Water Resources Management, 11(5). https://doi.org/10.1007/s40899-025-01263-y

    Rapid urban expansion has significantly altered land use patterns, resulting in a decrease in pervious surface areas and a disruption of hydrologic connectivity between surface water and groundwater systems. Combined with inadequate drainage systems and poorly managed runoff, these changes have intensified urban flooding, leading to fatalities and significant infrastructure damage in many rapidly growing and climate-vulnerable urban areas around the world. This study presents an integrated economic-hydrologic model to assess the effectiveness of Low Impact Development (LID) measures—specifically permeable pavement, infiltration trenches, bio-retention cells, and rain barrels—in mitigating flood damage in the Bronx river watershed, NYC. The Storm Water Management Model (SWMM) was employed to simulate flood events and assess the effectiveness of various LIDs, applied individually and in combination, in reducing peak discharge. Flood inundation maps generated using HEC-GeoRAS were integrated with the HAZUS damage estimation model to quantify potential flood damages. A benefit-to-cost (BC) ratio was then calculated by comparing the monetary savings from reduced flood damage against the implementation costs of LID measures. Results indicate that the combined LID scenario offers the highest peak flow reduction, with permeable pavement alone reducing flow by 57%, outperforming other techniques under equal area coverage. Among all individual options, permeable pavement yields the highest cumulative BC ratio under all scenarios (4.6), whereas rain barrels are the least effective (2.6). The proposed evaluation framework highlights the importance of economic efficiency in flood mitigation planning and provides a structured foundation for informed decision-making to enhance urban resilience through LID implementation. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Soomro, S., Wei, H., Boota, M. W., Soomro, N.-E., Faisal, M., Nazli, S., sarwari, S., Shi, X., Hu, C., Guo, J., & Li, Y. (2025). River basin urban flood resilience: A multi-dimensional framework for risk mitigation to adaptive management and ecosystem protection under changing climate. Ecological Informatics, 91. https://doi.org/10.1016/j.ecoinf.2025.103412

    Study region: This study aims at the Kunhar River Basin, Pakistan, that has been facing repeated flood occurrences on a recurring basis. As the flood susceptibility of this area is high, its topographic complexity demands correct predictive modeling for strategic flood planning. Study focus: We developed a system of flood susceptibility mapping based on Geographic Information Systems (GIS), Principal Component Analysis (PCA), and Support Vector Machine (SVM) classification. Four kernel functions were applied, and the highest-performing was the Radial Basis Function (SVM-RBF). The model was validated and trained using historical flood inventories, morphometric parameters, and hydrologic variables, and feature dimensionality was reduced via PCA for increased efficiency. New hydrological insights: The SVM-RBF model recorded an AUC of 0.8341, 88.02% success, 84.97% predictability, 0.89 Kappa value, and F1-score of 0.86, all of which indicated high predictability. Error analysis yielded a PBIAS of +2.14%, indicating negligible overestimation bias but within limits acceptable in hydrological modeling. The results support the superiority of the SVM-RBF approach compared to conventional bivariate methods in modeling flood susceptibility over the complex terrain of mountains. The results can be applied in guiding evidence-based flood mitigation, land-use planning, and adaptive management in the Kunhar River Basin. © 2025 The Author(s)

  • Wang, S., & Bi, X. (2025). Integrative strategies for urban flood resilience and risk: A meta-analysis of policy, infrastructural, and ecosystem-based interventions. Physics and Chemistry of the Earth, 141. https://doi.org/10.1016/j.pce.2025.104077

    Urban flooding, intensified by climate change and rapid urbanization, demands robust and operationally effective resilience strategies. However, empirical evidence on the comparative effectiveness of such strategies remains limited. This study presents the first meta-analytic synthesis evaluating urban flood resilience interventions across institutional, infrastructural, and socio-ecological domains. By synthesizing data from 29 peer-reviewed studies (2000–2024), this study applies standardized effect sizes (Cohen's d) and meta-regression models to assess the effectiveness of different strategies. Results reveal a substantial overall effect (pooled d = 2.96, 95 % CI: [1.92, 3.99]) with high heterogeneity (I2 = 93.8 %). Institutional mechanisms, such as policy coordination, regulatory frameworks, and risk governance, consistently show the strongest and most statistically significant impacts (d ≈ 2.96). Low Impact Development (LID) demonstrates limited, non-significant effects (d ≈ 0.08). The study introduces a novel hierarchical resilience framework spanning different dimensions and establishes an evidence-based typology of urban flood resilience strategies. These findings highlight the importance of integrated, multi-level governance and context-specific planning in enhancing urban flood resilience. The study findings provides critical insights for implementing resilience strategies in flood-prone urban areas, and support the formulation of adaptive and sustainable urban policies. © 2025

  • Lhamidi, K., & El Khattabi, J. (2025). Enhancing the hydrological performance of Low Impact Development infrastructure through earthworm activity and vegetation dynamics for mitigating urban flooding. Ecological Engineering, 221. https://doi.org/10.1016/j.ecoleng.2025.107786

    Urban soil sealing and anthropogenic activities, combined with the increasing intensity of rainfall due to climate change, is a threat to urban environments, exacerbating flood risks. To assess these challenges, Low Impact Development strategies, based on Nature-based solutions, are a key solution to mitigate urban flooding. To enhance the hydrological performance of LID infrastructure, and to meet the guideline requirements related to emptying time, specifically in low hydraulic conductivity soils, earthworm activity and vegetation dynamics can play a major role. The ETAGEP experimental site was built to study to address those challenges. 12 swales (10 m2 infiltration area for each swale) were monitored to evaluate the impact of earthworm activity (A. caliginosa and L. terrestris) and vegetation dynamics (Rye Grass, Petasites hybridus and Salix alba) to enhance the hydrological performance. The infiltration rate of the swales evolved in a differentiated manner, with an increase of 16.1 % to 310.8 % and draining times decrease of 13.9 % to 75.7, depending on initial soil hydro-physical properties and the impervious areas of the catchment which influence runoff volumes. The simulations on SWMM software showed similar results, with an enhancement of the hydraulic conductivity of N6 swales (60 m2 total catchment area) increasing from 18 mm h−1 to 25 mm h−1, and a reduction of drawdown time by 24.4 % (N6) and 20.8 % (N11–110 m2 active surface). A simulated storm event of 44.8 mm resulted in an overflow of 2.12 m3 for the N11 swale configuration, while no overflow was observed for N6. These results highlight the ecosystem services of earthworms for a sustainable stormwater management in urban environments, enhancing the hydrological performance of LID infrastructures and reducing therefore flood risks and limiting pressure on drainage network. © 2025 The Author(s)

  • Mitali, P., Patel, N., Modi, K., & Patel, S. (2026). Predictive Modeling and Strategic Planning for Urban Flood Risk Mitigation. Commun. Comput. Info. Sci., 2619 CCIS, 188–199. https://doi.org/10.1007/978-3-032-00350-8_14

    Urban flooding threatens Indian cities and is made worse by rapid urbanization, climate change and poor infrastructure. Severe flooding occurred in cities such as Mumbai, Chennai and Ahmedabad. This has caused huge economic losses and displacement. This study addresses the limitations of traditional flood forecasting methods. It has to contend with the complex dynamics of urban flooding. We offer a deep learning approach which uses the network Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to improve flood risk prediction. Our CNN-LSTM model combines spatial data (water table, topography) and temporal data (historical model) to classify flood risk as low or high. This method includes collecting data pre-processing (MinMaxScaler, LabelEncoder) Modeling, Training and Evaluation. The results demonstrate the accuracy of flood risk predictions and provide insights into flexible strategies for urban flood management. This research highlights the role of data-driven approaches in improving urban planning to reduce flood risk in high-risk areas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

  • Le, T. T., Vo, T. Q., & Kim, J. (2025). An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth. Mathematics, 13(16). https://doi.org/10.3390/math13162617

    This study presents a novel bivariate-output deep learning framework based on LeNet-5 for the simultaneous prediction of urban flood susceptibility and inundation depth in Seoul, South Korea. Unlike previous studies that relied on single-output models, the proposed approach jointly learns classification and regression targets through a shared feature extraction structure, enhancing consistency and generalization. Among six tested architectures, the Le5SD_CBAM model—integrating a Convolutional Block Attention Module (CBAM)—achieved the best performance, with 83% accuracy, an Area Under the ROC Curve (AUC) of 0.91 for flood susceptibility classification, and a mean absolute error (MAE) of 0.12 m and root mean squared error (RMSE) of 0.18 m for depth estimation. The model’s spatial predictions aligned well with hydrological principles and past flood records, accurately identifying low-lying flood-prone zones and capturing localized inundation patterns influenced by infrastructure and micro-topography. Importantly, it detected spatial mismatches between susceptibility and depth, demonstrating the benefit of joint modeling. Variable importance analysis highlighted elevation as the dominant predictor, while distances to roads, rivers, and drainage systems were also key contributors. In contrast, secondary terrain attributes had limited influence, indicating that urban infrastructure has significantly altered natural flood flow dynamics. Although the model lacks dynamic forcings such as rainfall and upstream inflows, it remains a valuable tool for flood risk mapping in data-scarce settings. The bivariate-output framework improves computational efficiency and internal coherence compared to separate single-task models, supporting its integration into urban flood management and planning systems. © 2025 by the authors.

  • Kim, M.-K., & Xu, D. (2025). Seismic Performance Assessment of Gravity Dams for Urban Flood Risk Mitigation Using the Scaled Boundary Finite Element Method (SBFEM). Hydrology, 12(8). https://doi.org/10.3390/hydrology12080209

    Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical for regulating flood discharge, yet their seismic vulnerability poses significant challenges, particularly under compound effects involving concurrent seismic loading and climate-induced elevated reservoir levels. This study introduces a novel seismic analysis framework for gravity dams using the scaled boundary finite element method (SBFEM), which efficiently models dam–water and dam–foundation interactions in infinite domains. A two-dimensional numerical model of a concrete gravity dam, subjected to realistic seismic loading, was developed and validated against analytical solutions and conventional finite element method (FEM) results, achieving discrepancies as low as 0.95% for static displacements and 0.21% for natural frequencies. The SBFEM approach accurately captures hydrodynamic pressures and radiation damping, revealing peak pressures at the dam heel during resonance and demonstrating computational efficiency with significantly reduced nodal requirements compared to FEM. These findings enhance understanding of dam behavior under extreme loading. The proposed framework supports climate-adaptive design standards and integrated hydrological–structural modeling. By addressing the seismic safety of flood-control dams, this research contributes to the development of resilient urban water management systems capable of protecting metropolitan areas from compound climatic and seismic extremes. © 2025 by the authors.

  • Pachouri, V., Kothari, P., Kathuria, S., Gehlot, A., Singh, R., Thakur, A. K., Gupta, L. R., Dogra, S., Priyadarshi, N., & Mohamed, H. G. (2025). Revolutionizing urban water resilience: Innovative strategies and advancements in sustainable urban drainage systems (SuDS). Desalination and Water Treatment, 323. https://doi.org/10.1016/j.dwt.2025.101407

    Climate change and rapid urbanisation are straining urban stormwater management further, with floods and water pollution becoming more intense. SUDS is a nature-based alternative that solves these issues because it replicates natural hydrologic processes to create urban resilience. This systematic review summarises recent trends in SUDS technologies, performance, and policy frameworks, and their potential to mitigate flood risks, improve water quality, and enhance climate resilience. By the PRISMA methodology, 90 peer-reviewed studies published between 2014 and 2025 were considered, dealing with SUDS performance, cost-effectiveness, and overall difficulties with large-scale implementation of these systems. Main results are that bio-retention systems, permeable pavements, and green roofs are effective in controlling surface runoff and enhancing water quality. Moreover, the development of IoT-based monitoring and smart technologies has also considerably increased the scalability and efficiency of a SUDS. The review recommends the standardisation of SUDS performance, the incorporation of smart technologies, and more attractive policy incentives to speed up the uptake of SUDS in urban planning. One of the main contributions that this research is likely to make to the discourse concerning urban water resilience is that it offers evidence-based suggestions to policymakers and urban developers, and these suggestions argue in favour of taking urgent action in the area of climate adaptation by using SUDS extensively. © 2025 The Authors

  • Ogunbunmi, S., Chen, Y., Zhao, Q., Nagothu, D., Wei, S., Chen, G., & Blasch, E. (2025). Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges. Future Internet, 17(8). https://doi.org/10.3390/fi17080357

    Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. © 2025 by the authors.

  • Meguro, W., Briones, J. I., Teeples, E., & Fletcher, C. H. (2025). Establishing a Sea Level Rise-Adjusted Design Flood Elevation for Buildings: A Comparative Study of Methods. Water (Switzerland), 17(16). https://doi.org/10.3390/w17162376

    Coastal high tide flooding doubled in the U.S. between 2000 and 2022 and sea level rise (SLR) due to climate change will dramatically increase exposure and vulnerability to flooding in the future. However, standards for elevating buildings in flood hazard areas, such as base flood elevations set by the Federal Emergency Management Agency, are based on historical flood data and do not account for future SLR. To increase flood resilience in flood hazard areas, federal, state, regional, and municipal planning initiatives are developing guidance to increase elevation requirements for occupied spaces in buildings. However, methods to establish a flood elevation that specifically accounts for rising sea levels (or sea level rise-adjusted design flood elevation (SLR-DFE)) are not standardized. Many municipalities or designers lack clear guidance on developing or incorporating SLR-DFEs. This study compares guidance documents, policies, and methods for establishing an SLR-DFE. The authors found that the initiatives vary in author, water level measurement starting point, SLR scenario and timeframe, SLR adjustment, freeboard, design flood elevation, application (geography and building type), and whether it is required or recommended. The tables and graph compare the different initiatives, providing a useful summary for policymakers and practitioners to develop SLR-DFE standards. © 2025 by the authors.

  • Uddameri, V., & Hernandez, E. A. (2025). Machine Learning for Flood Resiliency—Current Status and Unexplored Directions. Environments - MDPI, 12(8). https://doi.org/10.3390/environments12080259

    A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors. © 2025 by the authors.

  • Monckeberg, E., & Gómez, S. (2025). Exploring the potential of coastal cities to address climate change towards an inclusive, equitable and politically engaged orientation. Anthropocene Coasts, 8(1). https://doi.org/10.1007/s44218-025-00099-5

    In the context of the global climate crisis, the analysis and strengthening of adaptive capacities in coastal urban environments has become imperative. Nearly 40% of the global population lives within 100 km of the coastline, making them critical research hotspots due to their particular vulnerability. This qualitative literature review takes a transdisciplinary approach and prioritizes research that addresses specific challenges and solutions for these vulnerable environments, with an emphasis on resilience to phenomena such as sea level rise, flooding and extreme weather events. The review analyzes articles that offer a holistic view, encompassing green and blue infrastructures, community needs and governance dynamics. It highlights studies that propose innovative strategies to foster citizen participation and explicitly address aspects such as climate justice. By synthesizing interdisciplinary perspectives and local knowledge, this review aims to provide a comprehensive framework for climate adaptation in coastal urban areas. The findings have the potential to inform public policy and urban planning practices. © The Author(s) 2025.

  • Lee, T., & Ouarda, T. B. M. J. (2025). Climate teleconnection-driven stochastic simulation for future water-related risk management. Journal of Hydrology, 662, 133834. https://doi.org/10.1016/j.jhydrol.2025.133834

    Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.

    Consulter sur www.sciencedirect.com
  • Awad, M. M., & Homayouni, S. (2025). High-Resolution Daily XCH4 Prediction Using New Convolutional Neural Network Autoencoder Model and Remote Sensing Data. Atmosphere, 16(7), 806. https://doi.org/10.3390/atmos16070806

    Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).

    Consulter le document
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 14
  • Page 1 de 14
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-09-20 06 h 52 (UTC)

Explorer

Axes du RIISQ

  • 2 - enjeux de gestion et de gouvernance
  • 1 - aléas, vulnérabilités et exposition (169)
  • 3 - aspects biopsychosociaux (196)
  • 4 - réduction des vulnérabilités (118)
  • 5 - aide à la décision, à l’adaptation et à la résilience (146)

Enjeux majeurs

  • Risques systémiques (63)
  • Inégalités et événements extrêmes (59)
  • Prévision, projection et modélisation (56)

Lieux

  • Canada (75)
  • Québec (province) (51)
  • États-Unis (23)
  • Europe (12)

Secteurs et disciplines

  • Nature et Technologie
  • Société et Culture (131)
  • Santé (101)

Types d'événements extrêmes

  • Inondations et crues (174)
  • Évènements liés au froid (neige, glace) (132)
  • Sécheresses et canicules (25)
  • Feux de forêts (10)

Types d'inondations

  • Fluviales (61)
  • Submersion côtière (12)
  • Par embâcle (10)
  • Pluviales (5)

Type de ressource

  • Article de colloque (5)
  • Article de revue (212)
  • Document (1)
  • Livre (2)
  • Prépublication (5)
  • Rapport (14)
  • Thèse (27)

Année de publication

  • Entre 1900 et 1999 (1)
    • Entre 1970 et 1979 (1)
      • 1975 (1)
  • Entre 2000 et 2025 (265)
    • Entre 2000 et 2009 (5)
      • 2004 (1)
      • 2007 (1)
      • 2008 (1)
      • 2009 (2)
    • Entre 2010 et 2019 (63)
      • 2010 (2)
      • 2011 (1)
      • 2012 (3)
      • 2013 (5)
      • 2014 (1)
      • 2015 (3)
      • 2016 (6)
      • 2017 (6)
      • 2018 (18)
      • 2019 (18)
    • Entre 2020 et 2025 (197)
      • 2020 (27)
      • 2021 (32)
      • 2022 (31)
      • 2023 (24)
      • 2024 (22)
      • 2025 (57)
      • 2026 (4)

Langue de la ressource

  • Anglais (144)
  • Français (32)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web