Votre recherche
Résultats 416 ressources
-
Water management practices in rice paddies, particularly alternate wetting and drying and midseason drainage followed by intermittent irrigation, are widely recognized for reducing methane (CH4) emissions and irrigation water use compared to continuous flooding (CF). However, these practices also increase nitrous oxide (N2O) emissions and their effect on rice yield remains unclear, especially in the context of technology dissemination to farmers. This study (1) reviews 11 recent meta-analyses on CH4 and N2O emissions and rice yield and (2) synthesizes their reported effects on rice growth and yield. Aggregated data show that CH4 emissions decreased by 31–62% (n = 10), while N2O emissions increased by 37–445% (n = 7), relative to CF. Rice yield change ranged from − 5.4% to + 11% with a mean of + 1.3% (n = 8). The impact of water management on rice yield varied depending on the timing and intensity of drainage events, with excessive water stress—particularly during the heading stage—and prolonged reductive soil conditions being key risk factors. Results indicate that mild-intensity drainage practices, such as ‘safe AWD,’ not only avoid yield penalties but can significantly enhance rice productivity when tailored to favorable environmental and agronomic conditions. For effective dissemination of these practices, leveraging yield improvement as an incentive for farmers is essential. Optimizing drainage schedules in accordance with rice physiological stages and local conditions is critical. With appropriate localization, water management can serve as a climate-smart strategy that simultaneously improves water efficiency, reduces greenhouse gas emissions, and maintains or increases rice productivity. © The Author(s) 2025.
-
Extreme weather events (EWEs), including floods, droughts, heatwaves and storms, are increasingly recognised as major drivers of biodiversity loss and ecosystem degradation. In this systematic review, we synthesise 251 studies documenting the impacts of extreme weather events on freshwater, terrestrial and marine ecosystems, with the goal of informing effective conservation and management strategies for areas of special conservation or protection focus in Ireland.Twenty-two of the reviewed studies included Irish ecosystems. In freshwater systems, flooding (34 studies) was the most studied EWE, often linked to declines in species richness, abundance and ecosystem function. In terrestrial ecosystems, studies predominantly addressed droughts (60 studies) and extreme temperatures (48 studies), with impacts including increase in mortality, decline in growth and shift in species composition. Marine and coastal studies focused largely on storm events (33 studies), highlighting physical damages linked to wave actions, behavioural changes in macrofauna, changes in species composition and distribution, and loss in habitat cover. Results indicate that most EWEs lead to negative ecological responses, although responses are context specific.While positive responses to EWEs are rare, species with adaptive traits displayed some resilience, especially in ecosystems with high biodiversity or refuge areas.These findings underscore the need for conservation strategies that incorporate EWE projections, particularly for protected habitats and species. © 2025 Royal Irish Academy. All rights reserved.
-
Flooding presents a significant challenge in the Lagos metropolis, driven by rapid urbanization, poor drainage infrastructure, and climate change. This study evaluates flood resilience strategies in Lagos, analyzing their effectiveness in mitigating flood risks and their alignment with the 2030 Agenda. The research utilizes the PICO (Population, Intervention, Control, and Outcomes) framework to refine research questions and follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for study selection, search strategies, and data extraction. A thorough search across databases such as Google Scholar, SCOPUS, and government data repositories was conducted to ensure the inclusion of relevant studies while minimizing selection bias. The study emphasizes the severe impacts of flooding, referencing the 2022–2023 flood event which resulted in USD 262,500 damages and displaced 8000 residents in Lagos State. Current flood resilience strategies are inadequate to meet the Sustainable Development Goals (SDGs) due to insufficient urban flood infrastructure, poor waste disposal practices, and worsening climatic conditions. The livelihoods, income, health, and overall survival of vulnerable communities are at significant risk. Key gaps identified include the weak enforcement of urban planning regulations, limited community engagement, ineffective early warning systems, and poor intervention initiatives. This study suggests a multi-stakeholder approach that enhances both structural and non-structural flood resilience. Improving drainage systems, promoting sustainable waste management, improving climate adaptation policies, and fostering community-based flood mitigation strategies are crucial for achieving long-term urban resilience. These findings offer valuable insights for policymakers, urban planners, and climate resilience advocates working toward the Sustainable Development Agenda in Lagos metropolis. Copyright © 2025 Orimoogunje and Aniramu.
-
Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.
-
Abstract Over the past 20 years, the Hydrological Ensemble Prediction Experiment (HEPEX) international community of practice has advanced the science and practice of hydrological ensemble prediction and its application in impact- and risk-based decision-making, fostering innovations through cutting-edge techniques and data that enhance water-related sectors. Here, we present insights from those 20 years on the key priorities for (co)creating broadly applicable hydrological forecasting systems that add value across spatial scales and time horizons. We highlight the advancement of hydrological forecasting chains through rigorous data management that incorporates diverse, high-quality data sources, data assimilation techniques, and the application of artificial intelligence (AI) to improve predictive accuracy. HEPEX has played a critical role in enhancing the reliability of water resources and water-related risk management globally by standardizing ensemble forecasting. This effort complements HEPEX’s broader initiative to strengthen research to operations, making innovative forecasting solutions both practical and accessible. Additionally, efforts have been made toward supporting the United Nations Early Warnings for All initiative through developing robust and reliable early warning systems by means of global training, education and capacity development, and the sharing of technology. Finally, we note that the integration of advanced science, user-centric methods, and global collaboration can provide a solid framework for improving the prediction and management of hydrological extremes, aligning forecasting systems with the dynamic needs of water resource and risk management in a changing climate. To effectively meet future demands, it is crucial to accelerate the integration of innovative science within operational frameworks, fostering adaptable and resilient hydrological forecasting systems globally.
-
ABSTRACT In recent years, numerous flood events have caused loss of life, widespread disruption, and damage across the globe. These devastating impacts highlight the importance of a better understanding of flood generating processes, their impacts, and their variability under climate and landscape changes. Here, we argue that the ability to better model flooding is underpinned by the grand challenge of understanding flood generation mechanisms and potential impacts. To address this challenge, the World Meteorological Organization‐Global Energy and Water Exchanges (GEWEX) Hydrometeorology Panel (GHP) aims to establish a Global Flood Crosscutting project to propagate flood modeling and research knowledge across regions and to synthesize results at the global scale. This paper outlines a framework for understanding the dynamics and impacts of runoff generation processes and a rationale for the role of a Global Flood Crosscutting project to address these challenges. Within this Global Flood Crosscutting project, we will establish a common terminology and methods to enable the global research community to exchange knowledge and experiences, and to design experiments toward developing actionable recommendations for more effective flood management practices and policies for improved resilience. This harmonization of rich perspectives across disciplines will foster the co‐production of knowledge primed to advance flood research, particularly in the current period of heightened climate variability and rapid change. It will create a new transdisciplinary paradigm for flood science, wherein different dimensions of mechanistic understanding and processes are rigorously considered alongside socioeconomic impacts, early warning communications, and longer‐term adaptation to alleviate flood risks in society.
-
ABSTRACT Urbanization is leading to more frequent flooding as cities have more impervious surfaces and runoff exceeds the capacity of combined sewer systems. In heavy rainfall, contaminated excess water is discharged into the natural environment, damaging ecosystems and threatening drinking water sources. To address these challenges aggravated by climate change, urban blue-green water management systems, such as bioretention cells, are increasingly being adopted. Bioretention cells use substrate and plants adapted to the climate to manage rainwater. They form shallow depressions, allowing infiltration, storage, and gradual evacuation of runoff. In 2018, the City of Trois-Rivières (Québec, Canada) installed 54 bioretention cells along a residential street, several of which were equipped with access points to monitor performance. Groundwater quality was monitored through the installation of piezometers to detect potential contamination. This large-scale project aimed to improve stormwater quality and reduce sewer flows. The studied bioretention cells reduced the flow and generally improved water quality entering the sewer system, as well as the quality of stormwater, with some exceptions. Higher outflow concentrations were observed for contaminants such as manganese and nitrate. The results of this initiative provide useful recommendations for similar projects for urban climate change adaptation.
-
Abstract Real-time precipitation data are essential for weather forecasting, flood prediction, drought monitoring, irrigation, fire prevention, and hydroelectric management. To optimize these activities, reliable precipitation estimates are crucial. Environment and Climate Change Canada (ECCC) leads the Canadian Precipitation Analysis (CaPA) project, providing near-real-time precipitation estimates across North America. However, during winter, CaPA’s 6-hourly accuracy is limited because many automatic surface observations are not assimilated due to wind-induced gauge undercatch. The objective of this study is to evaluate the added value of adjusted hourly precipitation amounts for gauge undercatch due to wind speed in CaPA. A recent ECCC dataset of hourly precipitation measurements from automatic precipitation gauges across Canada is included in CaPA as part of this study. Precipitation amounts are adjusted based on several types of transfer functions, which convert measured precipitation into what high-quality equipment would have measured with reduced undercatch. First, there are no notable differences in CaPA when comparing the performance of the universal transfer function with that of several climate-specific transfer functions based on wind speed and air temperature. However, increasing solid precipitation amounts using a specific type of transfer function that depends on snowfall intensity rather than near-surface air temperature is more likely to improve CaPA’s precipitation estimates during the winter season. This improvement is more evident when the objective evaluation is performed with direct comparison with the Adjusted Daily Rainfall and Snowfall (AdjDlyRS) dataset.
-
AbstractThe frequency and severity of floods has increased in different regions of the world due to climate change. Although the impact of floods on human health has been extensively studied, the increase in the segments of the population that are likely to be impacted by floods in the future makes it necessary to examine how adaptation measures impact the mental health of individuals affected by these natural disasters. The goal of this scoping review is to document the existing studies on flood adaptation measures and their impact on the mental health of affected populations, in order to identify the best preventive strategies as well as limitations that deserve further exploration. This study employed the methodology of the PRISMA-ScR extension for scoping reviews to systematically search the databases Medline and Web of Science to identify studies that examined the impact of adaptation measures on the mental health of flood victims. The database queries resulted in a total of 857 records from both databases. Following two rounds of screening, 9 studies were included for full-text analysis. Most of the analyzed studies sought to identify the factors that drive resilience in flood victims, particularly in the context of social capital (6 studies), whereas the remaining studies analyzed the impact of external interventions on the mental health of flood victims, either from preventive or post-disaster measures (3 studies). There is a very limited number of studies that analyze the impact of adaptation measures on the mental health of populations and individuals affected by floods, which complicates the generalizability of their findings. There is a need for public health policies and guidelines for the development of flood adaptation measures that adequately consider a social component that can be used to support the mental health of flood victims.
-
Le territoire de la vallée du Gave de Gavarnie a connu un épisode d’inondation/crue particulièrement catastrophique en 2013, ayant entrainé de forts dégâts matériels et des pertes humaines. Dans ce contexte, la culture du risque est un enjeu tant pour les acteurs de la gestion de ce territoire que pour les citoyens, d’autant plus que les risques présents y sont multiples (avalanches, glissements de terrain et séismes). Dans cette perspective, l’école peut jouer un rôle déterminant à travers la mise en place de projets d’éducations au(x) risque(s). Ce type d’éducation doit commencer par la perception et la conscience du (des) risque(s), rendues possibles par le vécu et/ou par la culture du groupe dans lequel l’élève vit. Cette étude a pour objectif d’examiner les représentations et la perception du risque des élèves d’une école élémentaire française située sur une commune fortement impactée par cette crue, et l’évolution de ces représentations et cette perception un an après la mise en œuvre du projet éducatif. Les résultats montrent une représentation plurielle du risque par les élèves avec des différences entre classes. La classe de CP-CE (enfants âgés de 6 à 8 ans) associe essentiellement le risque à l’aléa naturel (avalanche, inondation…) alors que les élèves en CM (enfants âgés de 9 à 10 ans) sont centrés sur ce qui pourrait leur arriver (accident, maladie…). Le risque inondation/crue est dans un premier temps très peu évoqué dans les représentations des élèves, mais lorsque les activités pédagogiques permettent de contextualiser cette notion sur leur territoire, il est alors plus fortement perçu.
-
<p><strong class="journal-contentHeaderColor">Abstract.</strong> Year-round river discharge estimation and forecasting is a critical component of sustainable water resource management. However, in cold climate regions such as Canada, this basic task gets intricated due to the challenge of river ice conditions. River ice conditions are dynamic and can change quickly in a short period of time. This dynamic nature makes river ice conditions difficult to forecast. Moreover, the observation of under-ice river discharge also remains a challenge since no reliable method for its estimation has been developed till date. It is therefore an active field of research and development. The integration of river ice hydraulic models in forecasting systems has remained relatively uncommon. The current study has two main objectives: first is to demonstrate the development and capabilities of a river ice forecasting system based on coupled hydrological and hydraulic modelling approach for the Chaudière River in Québec; and second is to assess its functionality over selected winter events. The forecasting system is developed within a well-known operational forecasting platform: the Delft Flood Early Warning System (Delft-FEWS). The current configuration of the systems integrates (i) meteorological products such as the Regional Ensemble Prediction System (REPS); (ii) a hydrological module implemented through the HydrOlOgical Prediction LAboratory (HOOPLA), a multi-model based hydrological modelling framework; and (iii) hydraulic module implemented through a 1D steady and unsteady HEC-RAS river ice models. The system produces ensemble forecasts for discharge and water level and provides flexibility to modify various dynamic parameters within the modelling chain such as discharge timeseries, ice thickness, ice roughness as well as carryout hindcasting experiments in a batch production way. Performance of the coupled modelling approach was assessed using “Perfect forecast” over winter events between 2020 and 2023 winter seasons. The root mean square error (RMSE) and percent bias (Pbias) metrics were calculated. The hydrologic module of the system showed significant deviations from the observations. These deviations could be explained by the inherent uncertainty in the under-ice discharge estimates as well as uncertainty in the modelling chain. The hydraulic module of the system performed better and the Pbias was within ±10 %.</p>
-
Coastal areas are particularly vulnerable to flooding from heavy rainfall, sea storm surge, or a combination of the two. Recent studies project higher intensity and frequency of heavy rains, and progressive sea level rise continuing over the next decades. Pre-emptive and optimal flood defense policies that adaptively address climate change are needed. However, future climate projections have significant uncertainty due to multiple factors: (a) future CO2 emission scenarios; (b) uncertainties in climate modelling; (c) discount factor changes due to market fluctuations; (d) uncertain migration and population growth dynamics. Here, a methodology is proposed to identify the optimal design and timing of flood defense structures in which uncertainties in 21st century climate projections are explicitly considered probabilistically. A multi-objective optimization model is developed to minimize both the cost of the flood defence infrastructure system and the flooding hydraulic risk expressed by Expected Annual Damage (EAD). The decision variables of the multi-objective optimization problem are the size of defence system and the timing of implementation. The model accounts for the joint probability density functions of extreme rainfall, storm surge and sea level rise, as well as the damages, which are determined dynamically by the defence system state considering the probability and consequences of system failure, using a water depth–damage curve related to the land use (Corine Land Cover); water depth due to flooding are calculated by hydraulic model. A new dominant sorting genetic algorithm (NSGAII) is used to solve the multi-objective problem optimization. A case study is presented for the Pontina Plain (Lazio Italy), a coastal region, originally a swamp reclaimed about a hundred years ago, that is rich in urban centers and farms. A set of optimal adaptation policies, quantifying size and timing of flood defence constructions for different climate scenarios and belonging to the Pareto curve obtained by the NSGAII are identified for such a case study to mitigate the risk of flooding and to aid decision makers.
-
Management and control of flood hazards, the most frequent natural disaster worldwide, has become a greater challenge due to the increasingly unpredictable precipitation and runoff due to climate change. As many rural areas in Iran are vulnerable to flash floods occurring mainly in the spring, more accurate plans are needed to help reduce the risk of related damage. To address this concern, a robust methodology using multi-objective optimization is proposed, which incorporates the large uncertainties in the modeling parameters defining the risk of flooding. The proposed framework has been implemented in the upper catchment of the Taleghanrood river in the Taleghan district in Iran, which is vulnerable to flooding. The results provide a detailed performance assessment of alternative infrastructure designs, which will help to increase the efficiency of flood management strategies. The optimization uses multi-criteria optimization evolutionary algorithms (MOEA) and Bayesian estimation concepts. The resulting specific design plans, as levees’ height increases over a 50-year time horizon, for controlling floods under given scenarios reflect the uncertainty in the parameters.
-
Questions have been raised about the correctness of water quality models with complete mixing assumptions in cross junctions of water distribution systems. Recent developments in the mixing phenomenon within cross junctions of water distribution networks (WDNs) have heightened the need for evaluating the existing incomplete mixing models under real-world conditions. Therefore, in this study, two cross junctions with pipe diameters of 100 Â 100 Â 100 Â 100 mm and 150 Â 150 Â 150 Â 150 mm were employed in laboratory experiments to evaluate six existing incomplete mixing models for 25 flow rate scenarios ranging between 1.5 and 3.0 L/s. It was observed that within the same flow rate scenario, the degree of mixing in a cross junction with a pipe relative roughness of 6.00 Â 10À5 (pipe diameter of 25 mm) was higher than that in a cross junction with a pipe relative roughness of 3.00 Â 10À5 (pipe diameter of 50 mm) and smaller. Considering the real-world size of pipes in evaluating the incomplete mixing models showed that two incomplete mixing models, AZRED and the one by Shao et al., had the best accordance with the results of the laboratory experiments.
-
The water quality models used in contamination source identification (CSI) tools assume complete mixing at the junctions of drinking water distribution networks. Two extensions of the contamination status algorithm (CSA)—a CSI tool that employs water quality models in a reverse-time manner—were accordingly developed in this study, one assuming complete mixing (CSA-CMX) and the other assuming incomplete mixing (CSA-IMX) at cross-junctions. Both algorithms identified contamination sources based on the results of grab sampling at iteratively suggested locations. The performances of CSA-CMX and CSA-IMX were evaluated through laboratory experiments using three contamination identification problems: CSA-IMX identified the contamination source in all three problems, whereas CSA-CMX identified the contamination source in only one. Furthermore, the specificity (i.e., the ability to distinguish the real contamination source from other possible contamination sources) was higher for CSA-IMX than for CSA-CMX in two of the three problems. Therefore, the incomplete mixing assumption was confirmed to be a crucial factor in CSI tools.
-
Traditional stormwater control measures are designed to handle system loadings induced by fixed-size storm events. However, climate change is predicted to alter the frequency and intensity of flooding events, stimulating the need to explore another more adaptive flooding solution like real-time control (RTC). This study assesses the performance of RTC to mitigate impacts of climate change on urban flooding resilience. A simulated, yet realistic, urban drainage system in Salt Lake City, Utah, USA, shows that RTC improves the flooding resilience by up to 17% under climatic rainfall changes. Compared with green stormwater infrastructure (GSI), RTC exhibits a lower resistibility, lower flooding failure level, and higher recovery rate in system performance curves. Results articulate that keeping RTC's performance consistent under ‘back-to-back’ storms requires a tradeoff between upstream dynamical operation and downstream flooding functionality loss. This research suggests that RTC provides a path towards smart and resilient stormwater management strategy.
-
Combined sewer surcharges in densely urbanized areas have become more frequent due to the expansion of impervious surfaces and intensified precipitation caused by climate change. These surcharges can generate system overflows, causing urban flooding and pollution of urban areas. This paper presents a novel methodology to mitigate sewer system surcharges and control surface water. In this methodology, flow control devices and urban landscape retrofitting are proposed as strategies to reduce water inflow into the sewer network and manage excess water on the surface during extreme rainfall events. For this purpose, a 1D/2D dual drainage model was developed for two case studies located in Montreal, Canada. Applying the proposed methodology to these two sites led to a reduction of the volume of wastewater overflows by 100% and 86%, and a decrease in the number of surface overflows by 100% and 71%, respectively, at the two sites for a 100-year return period 3-h Chicago design rainfall. It also controlled the extent of flooding, reduced the volume of uncontrolled surface floods by 78% and 80% and decreased flooded areas by 68% and 42%, respectively, at the two sites for the same design rainfall.
-
In recent years, understanding and improving the perception of flood risk has become an important aspect of flood risk management and flood risk reduction policies. The aim of this study was to explore perceptions of flood risk in the Petite Nation River watershed, located in southern Quebec, Canada. A survey was conducted with 130 residents living on a floodplain in this river watershed, which had been affected by floods in the spring of 2017. Participants were asked about different aspects related to flood risk, such as the flood hazard experience, the physical changes occurring in the environment, climate change, information accessibility, flood risk governance, adaptation measures, and finally the perception of losses. An analysis of these factors provided perspectives for improving flood risk communication and increasing the public awareness of flood risk. The results indicated that the analyzed aspects are potentially important in terms of risk perception and showed that the flood risk perceptions varied for each aspect analyzed. In general, the information regarding flood risk management is available and generally understandable, and the level of confidence was good towards most authorities. However, the experiences of flood risk and the consequences of climate change on floods were not clear among the respondents. Regarding the adaptation measures, the majority of participants tended to consider non-structural adaptation measures as being more relevant than structural ones. Moreover, the long-term consequences of flooding on property values are of highest concern. These results provide a snapshot of citizens’ risk perceptions and their opinions on topics that are directly related to such risks.
-
In Canada, flooding is the most common and costly natural hazard. Flooding events significantly impact communities, damage infrastructures and threaten public security. Communication, as part of a flood risk management strategy, is an essential means of countering these threats. It is therefore important to develop new and innovative tools to communicate the flood risk with citizens. From this perspective, the use of story maps can be very effectively implemented for a broad audience, particularly to stakeholders. This paper details how an interactive web-based story map was set up to communicate current and future flood risks in the Petite-Nation River watershed, Quebec (Canada). This web technology application combines informative texts and interactive maps on current and future flood risks in the Petite-Nation River watershed. Flood risk and climate maps were generated using the GARI tool, implemented using a geographic information system (GIS) supported by ArcGIS Online (Esri). Three climate change scenarios developed by the Hydroclimatic Atlas of Southern Quebec were used to visualize potential future impacts. This study concluded that our story map is an efficient flood hazard communication tool. The assets of this interactive web mapping tool are numerous, namely user-friendly mapping, use and interaction, and customizable displays.
-
This paper presents a new framework for floodplain inundation modeling in an ungauged basin using unmanned aerial vehicles (UAVs) imagery. This method is based on the integrated analysis of high-resolution ortho-images and elevation data produced by the structure from motion (SfM) technology. To this end, the Flood-Level Marks (FLMs) were created from high-resolution UAV ortho-images and compared to the flood inundated areas simulated using the HEC-RAS hydraulic model. The flood quantiles for 25, 50, 100, and 200 return periods were then estimated by synthetic hydrographs using the Natural Resources Conservation Service (NRCS). The proposed method was applied to UAV image data collected from the Khosban village, in Taleghan County, Iran, in the ungauged sub-basin of the Khosban River. The study area is located along one kilometre of the river in the middle of the village. The results showed that the flood inundation areas modeled by the HEC-RAS were 33%, 19%, and 8% less than those estimated from the UAV’s FLMs for 25, 50, and 100 years return periods, respectively. For return periods of 200 years, this difference was overestimated by more than 6%, compared to the UAV’s FLM. The maximum flood depth in our four proposed scenarios of hydraulic models varied between 2.33 to 2.83 meters. These analyses showed that this method, based on the UAV imagery, is well suited to improve the hydraulic modeling for seasonal inundation in ungauged rivers, thus providing reliable support to flood mitigation strategies