Votre recherche
Résultats 416 ressources
-
"This book offers the first critical, multi-disciplinary study of how the concepts of resilience and the Anthropocene have combined to shape contemporary thought and governmental practice. Faced with the climate catastrophe of the Anthropocene, theorists and policymakers are increasingly turning to 'sustainable', 'creative' and 'bottom-up' imaginaries of governance. The book brings together cutting-edge insights from leading geographers, international relations scholars and philosophers to explore how the concepts of resilience and the Anthropocene challenge and transform prevailing understandings of Earth, space, time and knowledge, and how these transformations reshape governance, ethics and critique today. This book examines how the Anthropocene calls into question established categories through which modern societies have tended to make sense of the world and engage in critical reflection and analysis. It also considers how resilience approaches attempt to re-stabilize these categories - and the ethical and political effects that result from these resilience-based efforts. Offering innovative insights into the problem of how environmental change is known and governed in the Anthropocene, this book will be of interest to students in fields such as geography, international relations, anthropology, science and technology studies, sociology, and the environmental humanities"--
-
Abstract To increase the resilience of communities against floods, it is necessary to develop methodologies to estimate the vulnerability. The concept of vulnerability is multidimensional, but most flood vulnerability studies have focused only on the social approach. Nevertheless, in recent years, following seismic analysis, the physical point of view has increased its relevance. Therefore, the present study proposes a methodology to map the flood physical vulnerability and applies it using an index at urban parcel scale for a medium-sized town (Ponferrada, Spain). This index is based on multiple indicators fed by geographical open-source data, once they have been normalized and combined with different weights extracted from an Analytic Hierarchic Process. The results show a raster map of the physical vulnerability index that facilitates future emergency and flood risk management to diminish potential damages. A total of 22.7% of the urban parcels in the studied town present an index value higher than 0.4, which is considered highly vulnerable. The location of these urban parcels would have passed unnoticed without the use of open governmental datasets, when an average value would have been calculated for the overall municipality. Moreover, the building percentage covered by water was the most influential indicator in the study area, where the simulated flood was generated by an alleged dam break. The study exceeds the spatial constraints of collecting this type of data by direct interviews with inhabitants and allows for working with larger areas, identifying the physical buildings and infrastructure differences among the urban parcels.
-
RÉSUMÉ : Les inondations dans la MRC de Bonaventure, à l'instar des inondations de 2017 et de 2019 aux Québec, amènent à repenser les politiques de gestion préventive des inondations dans les municipalités mais il est nécessaire de revisiter le passé pour mieux anticiper le futur. A l'heure actuelle, aucune étude dans la MRC de Bonaventure n'a abordé la trajectoire de la vulnérabilité aux inondations. Le projet de recherche avait pour objectif d'évaluer l'évolution spatio-temporelle de la vulnérabilité aux inondations dans la MRC de Bonaventure plus précisément dans les bassins versants des rivières Cascapédia et petite Cascapédia. Cette recherche s'est particulièrement intéressée à : - 1) - identifier les indicateurs de vulnérabilité aux inondations les plus pertinents et leurs interactions et - 2) - comprendre la trajectoire de la vulnérabilité aux inondations dans le temps. La méthode indicielle a permis de calculer les indices de vulnérabilité par addition d'indicateurs pondérés dans l'analyse de la trajectoire de la vulnérabilité pour les années 1986, 1996, 2006 et de 2016 à partir de 43 indicateurs sélectionnés, adaptés au contexte de la zone d'étude et validés par la MRC de Bonaventure. L'évaluation de la trajectoire de la vulnérabilité aux inondations révèle que les variables socio-économiques sont les plus importantes contribuant à faire varier la vulnérabilité dans le temps dans les corridors fluviaux des rivières Cascapédia et petite Cascapédia. Cette étude expose le caractère dynamique, temporel et transformationnel de la vulnérabilité. Les cartographies de vulnérabilité générées en maillages de 200 m x 200 m et les enquêtes sur le terrain ont permis de mieux appréhender les changements globaux qui ont contribué à l'évolution de la vulnérabilité aux inondations et de comprendre la nature de la vulnérabilité aux inondations. Cette analyse permettra aux décideurs d'anticiper le futur pour une planification concrète de l'adaptation et des mesures de prévention. La trajectoire de la vulnérabilité se présente alors comme un outil de prévention et de prospection pour les décideurs. Elle permet d'appréhender la vulnérabilité du passé, comprendre la vulnérabilité du présent et anticiper sur la vulnérabilité du futur. -- Mot(s) clé(s) en français : Trajectoire, vulnérabilité, inondation, indice de vulnérabilité, gestion préventive. -- ABSTRACT : The floods in the MRC of Bonaventure, like the floods of 2017 and 2019 in Quebec, lead to a rethink of the preventive flood management policies in the municipalities, but it is necessary to revisit the past to better anticipate the future. At present, no study in the MRC of Bonaventure has addressed the trajectory of vulnerability to flooding. The objective of the research project was to assess the spatio-temporal evolution of vulnerability to flooding in the MRC of Bonaventure, more specifically in the watersheds of the Cascapedia and Petite Cascapedia rivers. This research was particularly interested in: - 1) - identifying the most relevant flood vulnerability indicators and their interactions and - 2) - understanding the trajectory of flood vulnerability over time. The index method made it possible to calculate the vulnerability indices by adding weighted indicators in the analysis of the trajectory of vulnerability for the years 1986, 1996, 2006 and 2016 from 43 selected indicators, adapted to the context of the study area and validated by the MRC of Bonaventure. The evaluation of the trajectory of vulnerability to flooding reveals that socio-economic variables are the most important contributing to varying vulnerability over time in the fluvial corridors of the Cascapedia and Petite Cascapedia rivers. This study exposes the dynamic, temporal and transformational character of vulnerability. The vulnerability maps generated in 200 m x 200 m grids and the field surveys have made it possible to better understand the global changes that have contributed to the evolution of vulnerability to floods and to understand the nature of vulnerability to floods. This analysis will allow decision-makers to anticipate the future for concrete planning of adaptation and prevention measures. The trajectory of vulnerability is then presented as a prevention and prospecting tool for decision-makers. It makes it possible to apprehend the vulnerability of the past, to understand the vulnerability of the present and to anticipate the vulnerability of the future. -- Mot(s) clé(s) en anglais : Trajectory, vulnerability, flooding, vulnerability index, preventive management.
-
Tokyo is located in a lowland area that is vulnerable to flooding. Due to global climate change, the scalability and frequency of flooding is increasing. On the other hand, population aging and family structural changes, as well as the lack of adaptation measures, would accelerate flooding vulnerability. The key factors involved in social vulnerability must be studied to reduce the risk of flooding. In this study, we refer to the MOVE framework (a disaster vulnerability assessment framework) and analyze it from three perspectives: Exposure to social vulnerability, susceptibility, and resilience. We subsequently develop an index system to complete the evaluation using 11 indicators. The collected data will help reveal social vulnerability to floods in the Katsushika Ward, Tokyo, using the information entropy method and GIS. We found that the western region of the Katsushika Ward is at more risk than the eastern region during flooding. Additionally, the possibility of a serious crisis erupting is greater in the southwestern region than in the northwestern region. Consequently, we conclude that the spatial distribution of flooding varies in the region. The results of this study will help in understanding social vulnerability, in selecting and combining adaptation measures suited to the characteristics of the area, and in the effective and efficient implementation of these measures by the local government’s disaster department.
-
Abstract This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyper-heterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal-weighting interpolation. Compared to CEDS, 37% and 72% fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable sub-populations impairs preparedness and relief efforts.
-
Abstract Fluvial hazards of river mobility and flooding are often problematic for road infrastructure and need to be considered in the planning process. The extent of river and road infrastructure networks and their tendency to be close to each other creates a need to be able to identify the most dangerous areas quickly and cost‐effectively. In this study, we propose a novel methodology using random forest (RF) machine learning methods to provide easily interpretable fine‐scale fluvial hazard predictions for large river systems. The tools developed provide predictions for three models: presence of flooding (PFM), presence of mobility (PMM) and type of erosion model (TEM, lateral migration, or incision) at reference points every 100 m along the fluvial network of three watersheds within the province of Quebec, Canada. The RF models use variables focused on river conditions and hydrogeomorphological processes such as confinement, sinuosity, and upstream slope. Training/validation data included field observations, results from hydraulic and erosion models, government infrastructure databases, and hydro‐ geomorphological assessments using 1‐m DEM and satellite/historical imagery. A total of 1807 reference points were classified for flooding, 1542 for mobility, and 847 for the type of erosion out of the 11,452 reference points for the 1145 km of rivers included in the study. These were divided into training (75%) and validation (25%) datasets, with the training dataset used to train supervised RF models. The validation dataset indicated the models were capable of accurately predicting the potential for fluvial hazards to occur, with precision results for the three models ranging from 83% to 94% of points accurately predicted. The results of this study suggest that RF models are a cost‐effective tool to quickly evaluate the potential for fluvial hazards to occur at the watershed scale.
-
IntroductionCaribbean Small island developing states (SIDS) are generally qualified as disproportionately vulnerable to climate change, including extreme weather events like hurricanes. While many studies already documented the impacts of climate change on health in the wealthiest countries, there is little knowledge in this field in Caribbean SIDS. Our study aims to discuss health risks and vulnerabilities in a Caribbean context to inform future adaptation measures to climate change.MethodsOur paper is based on a qualitative study that was conducted in Dominica, a Caribbean SIDS. The data come from semi-structured interviews organized between March 2020 and January 2021 with people internally displaced following an extreme climate event, either tropical storm Erika (2015) or Hurricane Maria (2017), and with some people who migrated to Guadeloupe after Hurricane Maria. Interview guides were based on conceptual frameworks on climate change, migration and health, and vulnerability to climate change. Data were analyzed deductively based on frameworks and inductively to allow new codes to emerge.ResultsOur findings suggest that current knowledge of climate change by those who have been displaced by an extreme climate event varied greatly depending on the education level, class, and socioeconomic condition of the participant. Participants experienced various negative consequences from a storm or hurricane such as increased risk of relocation, lack of access to healthcare, and food, job, and water insecurities – all circumstances know to correlate with mental health issues. Participants suggested stronger dwellings, community preparedness committees to act sooner, and climate change sensitization and awareness campaigns to foster community unity and solidarity.ConclusionThese findings contribute to the perspectives and knowledge of climate change, highlighting that existing extreme climate event committees and government officials need to address structural and social barriers that can potentially increase social inequalities and lead to maladaptation to climate change with potential consequences on public health.
-
This paper explores the risk approach, considering both the physical and human dimensions of the phenomenon in order to produce a more realistic and spatial analysis of risk. Exposure and vulnerability were combined and evaluated multidimensionally, considering individual, socio-economic, and structural (building-related) aspects. These risk factors were then integrated in a multi-criteria analysis in order to produce a comprehensive risk index that could be visualized at the building scale. The relative importance of the indicators was determined through a participatory process involving local and national experts on civil security and flooding. Particular attention was paid to individual vulnerability, including perception and preparedness for flood risk, which were explored directly with local people using a questionnaire. Qualitative and quantitative analyses of the responses allowed for a better understanding of the perception and preparedness of populations exposed to flooding. These data should help to improve risk communication between the authorities concerned and the populations at risk, as well as encouraging implementation of appropriate measures and a bottom-up participatory management approach. The integration of data in a geographic information system enables the visualization and spatialization of risk, but also each of its components.
-
In Eastern Dhaka, perennial flood remains a constant threat to people and livelihoods. Learning from the micro-level experiences of the poor in the peri-urban areas of Dhaka provides insights on the intersections between physical vulnerability, flood response strategies, and adaptive capacity. Through a convergent mixed method, this study examines the physical vulnerability of residential buildings, flood damages, and local physical responses in three neighborhoods of Eastern Dhaka. Results show that the level of damage to buildings is the most important predictor of physical vulnerability to floods. Buildings that are older than 20 years old and built with natural materials are likely to experience high flood damages compared to buildings that are less than 10 years and constructed with durable materials. The study concludes that in addition to socio-economic interventions, a targeted and people-centered flood management regime that pays attention to age, material composition, and structural quality of houses is necessary to build residents’ adaptive capacities and long-term resilience to flooding. This study contributes to the emerging work on grassroots responses to flood vulnerabilities with practical insights for urban planners and disaster management professionals on particular interventions needed to improve the performance of local responses to flood risks and vulnerabilities.
-
Abstract The database of the Quebec Ministry of Transport allowed us to analyze the occurrence of ice-block falls and snow avalanches for the past decades along national road 132. The results show that ice structure collapse may be categorized into three distinct phases by using daily temperatures (minimum, maximum, and average) and the cumulative degree day (temperatures above 0°C) since the March 1 st , corresponding to the beginning of the ice wall melting period: 1) a short and intense period of ice-block falls from the mid-April to the beginning of May; 2) a period of constant activity, mainly during the two first weeks of May; and 3) isolated residual activity, with a low frequency of ice-block falls until the month of June. The snow avalanche days were mainly characterized by significant snowfalls or rain-on-snow events with temperature>0°C. The multi-hazard probability was then evaluated based on the timing and relative frequency of ice-block fall and the modeling of sufficient snowpack for avalanching. This simple method to assess the synergistic effect of hillslope processes allows a better understanding of the spring avalanche regime related to the collapse of ice structures. These findings are expected to assist in the management of natural hazards and to improve our knowledge of spatiotemporal dynamics of mass-wasting events on highways.
-
Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to adapt and respond to floods, which in turn largely depends on their social vulnerability. This study shows how a joint assessment of hazard, exposure and social vulnerability provides valuable information for the evaluation of FRM strategies. The adopted methodology uses data on hazard and exposure combined with a social vulnerability index. The relevance of this state-of-the-art approach taken is exemplified in a case-study of Rotterdam, the Netherlands. The results show that not only a substantial share of the population can be defined as socially vulnerable, but also that the population is very heterogeneous, which is often ignored in traditional flood risk management studies. It is concluded that FRM measures, such as individual mitigation, evacuation or flood insurance coverage should not be applied homogenously across large areas, but instead should be tailored to local characteristics based on the socioeconomic characteristics of individual households and neighborhoods.
-
Abstract While flood risk management planning in the U nited S tates has focused on flood control structures designed to protect the economic value of property, it has consistently undervalued other social impacts associated with flooding. The US A rmy C orps of E ngineers ( USACE ) recently initiated research aimed at understanding how to incorporate social characteristics into the measures currently utilised in flood control project evaluation and consideration. This paper proposes a methodology for incorporating a known measure of social vulnerability, the S ocial V ulnerability I ndex ( SoVI ), into USACE civil works planning. Using the USACE S outh A tlantic D ivision as the study area, this paper evaluates eight different variations of the social vulnerability metric and their potential deployment in USACE projects. Each formulation is compared with the original‐computed SoVI as a means to test its spatial and statistical sensitivity, including an assessment of each variant's robustness, reducibility, scalability, and transferability. Results indicate that while it is possible to create simplified, yet robust, versions of SoVI for individual places, such ‘lite’ metrics tend to fall short in areas of scalability and transferability in relation to the original SoVI formulation.