UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Axes du RIISQ
  • 2 - enjeux de gestion et de gouvernance
Enjeux majeurs
  • Inégalités et événements extrêmes

Résultats 72 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
Résumés
  • Ahmad, M. I., Shen, Q., Boota, M. W., Liu, R., & Ma, H. (2025). Natural Disasters and Rehabilitation: Post‐Disaster Aid, Corruption, Misallocation, and Mistargeting. Sustainable Development, sd.70225. https://doi.org/10.1002/sd.70225

    ABSTRACT The increasing frequency of natural disasters, such as floods, droughts, and tsunamis, has made vulnerable communities less resilient, pushing them toward long‐term poverty and food insecurity. Effective post‐disaster rehabilitation is critical to restoring livelihoods, infrastructure, and food security. However, challenges such as corruption, misallocation, and mistargeting undermine post‐disaster aid programs. This study systematically reviews 86 peer‐reviewed articles (1990–2023) using the preferred reporting items for systematic reviews and meta‐analyses (PRISMA) protocol to investigate aid inefficiencies in disaster recovery. The findings reveal that aid often fails to reach the most affected communities, being diverted to unaffected areas due to political influence and local elites, exacerbating inequalities. Corruption further hampers institutional performance and long‐term disaster resilience efforts. The study calls for transparent, accountable, and inclusive strategies for aid distribution, aligning with SDG 10 (reduced inequalities) and SDG 11 (sustainable cities and communities). Future research should focus on gender‐sensitive strategies, local governance, and technological innovations to enhance aid transparency and effectiveness.

    Consulter sur onlinelibrary.wiley.com
  • Kim, M.-K., & Xu, D. (2025). Seismic Performance Assessment of Gravity Dams for Urban Flood Risk Mitigation Using the Scaled Boundary Finite Element Method (SBFEM). Hydrology, 12(8). https://doi.org/10.3390/hydrology12080209

    Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical for regulating flood discharge, yet their seismic vulnerability poses significant challenges, particularly under compound effects involving concurrent seismic loading and climate-induced elevated reservoir levels. This study introduces a novel seismic analysis framework for gravity dams using the scaled boundary finite element method (SBFEM), which efficiently models dam–water and dam–foundation interactions in infinite domains. A two-dimensional numerical model of a concrete gravity dam, subjected to realistic seismic loading, was developed and validated against analytical solutions and conventional finite element method (FEM) results, achieving discrepancies as low as 0.95% for static displacements and 0.21% for natural frequencies. The SBFEM approach accurately captures hydrodynamic pressures and radiation damping, revealing peak pressures at the dam heel during resonance and demonstrating computational efficiency with significantly reduced nodal requirements compared to FEM. These findings enhance understanding of dam behavior under extreme loading. The proposed framework supports climate-adaptive design standards and integrated hydrological–structural modeling. By addressing the seismic safety of flood-control dams, this research contributes to the development of resilient urban water management systems capable of protecting metropolitan areas from compound climatic and seismic extremes. © 2025 by the authors.

  • Monckeberg, E., & Gómez, S. (2025). Exploring the potential of coastal cities to address climate change towards an inclusive, equitable and politically engaged orientation. Anthropocene Coasts, 8(1). https://doi.org/10.1007/s44218-025-00099-5

    In the context of the global climate crisis, the analysis and strengthening of adaptive capacities in coastal urban environments has become imperative. Nearly 40% of the global population lives within 100 km of the coastline, making them critical research hotspots due to their particular vulnerability. This qualitative literature review takes a transdisciplinary approach and prioritizes research that addresses specific challenges and solutions for these vulnerable environments, with an emphasis on resilience to phenomena such as sea level rise, flooding and extreme weather events. The review analyzes articles that offer a holistic view, encompassing green and blue infrastructures, community needs and governance dynamics. It highlights studies that propose innovative strategies to foster citizen participation and explicitly address aspects such as climate justice. By synthesizing interdisciplinary perspectives and local knowledge, this review aims to provide a comprehensive framework for climate adaptation in coastal urban areas. The findings have the potential to inform public policy and urban planning practices. © The Author(s) 2025.

  • Lee, T., & Ouarda, T. B. M. J. (2025). Climate teleconnection-driven stochastic simulation for future water-related risk management. Journal of Hydrology, 662, 133834. https://doi.org/10.1016/j.jhydrol.2025.133834

    Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.

    Consulter sur www.sciencedirect.com
  • Latif, S., El Ouadi, I., & Ouarda, T. B. M. J. (2025). Copula-based joint distribution modelling of precipitation, temperature and humidity events in the assessments of agricultural risks, with a case study in Morocco. Stochastic Environmental Research and Risk Assessment, 39(9), 4017–4061. https://doi.org/10.1007/s00477-025-03047-4

    The agriculture sector is profoundly impacted by the abiotic stresses in arid or semi-arid regions that experience extreme weather patterns related to temperature (T), precipitation (P), humidity (H), and other factors. This study adopts a flexible approach that incorporates the D-vine copula density to analyze trivariate (and bivariate) joint and conditional hazard risk. The methodology was applied to a case study in the Ait Ben Yacoub region of Morocco. Monthly series for T, H, and P were modeled using the Weibull-2P and Weibull-3P models, selected based on fitness statistics. The survival BB8 copula was best described as joint dependence for pair T–P, rotated BB8 270 degrees copula for T–H, while rotated Joe 270 degrees copula for P–H. The analysis of joint probability stress focused on both primary joint scenarios (for OR and AND-hazard conditions) and conditional return periods (RPs) for trivariate and bivariate case. Lower univariate RPs resulted in higher marginal quantiles for T and lower for H and P events. Lower trivariate (and bivariate) AND-joint RPs (or higher concurrence probabilities) were associated with higher T with lower P and H quantiles. The occurrence of trivariate (and bivariate) events was less frequent in the AND-joint case compared to the OR-joint case. The conditional joint RP of T (or T with P, or T with H) was significantly affected by different P (at 10th and 25th percentile) and H (at 5th and 25th percentile) (or P, or H) conditions. Lower conditional RPs of T (or T with H, or T with P) had resulted at given low P and H (or low P, or low H levels). In conclusion, the estimated risk statistics are vital for the study region, highlighting the need for effective adaptation and resilience planning in agriculture crop management.

    Consulter sur doi.org
  • Cao, F., Chen, C., Zhang, C., & Xing, J. (2025). Risk identification and prevention of multi-level flood and typhoon prevention emergency drills. Progress in Disaster Science, 28. https://doi.org/10.1016/j.pdisas.2025.100458

    Amid increasing extreme weather events driven by global climate change, pre-emptive emergency drills are vital for strengthening disaster resilience. This paper focuses on risk identification and prevention in multi-level flood and typhoon prevention emergency drills, aiming to achieve effective risk management across administrative levels. Through literature review and expert consultation, 24 risk factors were hierarchically identified. A quantitative risk assessment model was developed by integrating the risk matrix and cloud model eigenvalues. The results show that risks are the most serious at municipal-level drills, with 20 risk factors (79.17 % of the total) at Level-III and above, decreasing at lower administrative levels (where risk level are categorized into Level-I (Major), Level-II (Large), Level-III (General), and Level-IV (Low) based on the risk matrix integrating likelihood and consequence levels, and Level-III and above risks may trigger resource wastage, drill failure, or even personnel casualties). Temporally, 39 risk factors at Level-III and above were concentrated in preparation stages across all administrative levels, declining to 3 such risk factors during rectification stage. Spatially, the number of risk factors peaked during the municipal-level and county-level preparation stages (11 risk factors respectively at Level-III and above), with their quantity gradually decreasing as the administrative level decreases and drill stages advance. Based on these findings, a systematic risk prevention matrix is proposed to offer targeted guidance for multi-level flood and typhoon prevention emergency drills in addressing climate change-induced disaster challenges. © 2025 The Authors

  • Schulte, L., Santisteban, J. I., Fuller, I. C., & Ballesteros-Cánovas, J. A. (2025). Editorial preface to special issue: Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events. Global and Planetary Change, 254. https://doi.org/10.1016/j.gloplacha.2025.105021

    Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors

  • Guo, Z., Shi, X., Zhang, D., & Zhao, Q. (2026). Effects of long-term wetland variations on flood risk assessments in the Yangtze River Basin. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108123

    Flooding is the most frequent natural disaster in the Yangtze River Basin (YRB), causing significant socio-economic damages. In recent decades, abundant wetland resources in the YRB have experienced substantial changes and played a significant role in strengthening the hydrological resilience to flood risks. However, wetland-related approaches remain underdeveloped for mitigating flood risks in the YRB due to the lack of considering long-term wetland effects in the flood risk assessment. Therefore, this study develops an wetland-related GIS-based spatial multi-index flood risk assessment model by incorporating the effects of wetland variations, to investigate the long-term implications of wetland variations on flood risks, to identify dominant flood risk indicators under wetland effects, and to provide wetland-related flood risk management suggestions. These findings indicate that wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin could enhance flood control capacity and reduce flood risks in most years between 1985 and 2021 except years with extreme flood disasters. Wetlands in the Sichuan Basin have aggravated but limited impacts on flood risks. Precipitation in the Taihu Lake Basin and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, and the Sichuan Basin are dominant flood risk indicators under wetland effects. Reasonably managing wetlands, maximizing stormwater storage capacity, increasing vegetation coverage in urbanized and precipitated regions are feasible suggestions for developing wetland-related flood resilience strategies in the YRB. © 2025 The Authors

  • Qiu, Y., Shi, X., & He, X. (2026). Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108130

    Climate change has increased the frequency and intensity of extreme floods in the Lower Mekong River Basin (LMB). This study leverages the Long Short-Term Memory (LSTM) model to evaluate its performance in predicting river discharge across the LMB and to identify the key variables contributing to flood prediction through SHapley Additive exPlanation (SHAP) and Universal Multifractal (UM) analyses, in a scale-dependent and scale-independent manner, respectively. The performance of the LSTM model is satisfactory, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.9 for all subbasins when using all input features. The model tends to underestimate the largest peak flows in the midstream subbasins that experienced extreme rainfall events. According to SHAP, soil-related variables are important contributors to discharge prediction, with their impacts partially manifested through interactions with precipitation and runoff. Furthermore, the dominant contributing variables influencing flood prediction vary over time: soil-related variables and vegetation-related variables played a more significant role in earlier years, whereas hydrometeorological variables became more dominant after 2017. The UM analysis investigates the scaling behaviours of contributing variables, showing that hydrometeorological-related variables have a greater influence on predicting extreme discharge across the small temporal scales. Additionally, the UM analysis indicates that the model's performance improves as the temporal variability in extremes of the combined features decreases across 1 to 16 days. Overall, this study provides a comprehensive assessment of the LSTM model's performance in discharge prediction, emphasising the impact of the variability in the extremes of combined features through the scale-independent interpretation. These findings will offer valuable insights for stakeholders to improve flood risk management across the LMB. © 2025 The Authors

  • Zhang, M., Chi, B., Gu, H., Zhou, J., Chen, H., Wang, W., Wang, Y., Chen, J., Yang, X., & Zhang, X. (2025). Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152352

    The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. © 2025 by the authors.

  • Sheng, K., Li, R., Zhang, F., Chen, T., Liu, P., Hu, Y., Li, B., & Song, Z. (2025). Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152342

    Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. © 2025 by the authors.

  • Kumar, G. P., & Dwarakish, G. S. (2025). Machine learning-based ensemble of Global climate models and trend analysis for projecting extreme precipitation indices under future climate scenarios. Environmental Monitoring and Assessment, 197(9). https://doi.org/10.1007/s10661-025-14469-6

    Monitoring changes in climatic extremes is vital, as they influence current and future climate while significantly impacting ecosystems and society. This study examines trends in extreme precipitation indices over an Indian tropical river basin, analyzing and ranking 28 Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs) based on their performance against India Meteorological Department (IMD) data. The top five performing GCMs were selected to construct multi-model ensembles (MMEs) using Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), Multiple Linear Regression (MLR), and the Arithmetic Mean. Statistical metrics reveal that the application of an RF model for ensembling performs better than other models. The analysis focused on six IMD-convention indices and eight indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). Future projections were examined for three timeframes: near future (2025–2050), mid-future (2051–2075), and far future (2076–2100) for SSP245 and SSP585 scenarios. Statistical trend analysis, the Mann-Kendall test, Sen’s Slope estimator, and Innovative Trend Analysis (ITA), were applied to the MME to assess variability and detect changes in extreme precipitation trends. Compared to SSP245, in the SSP585 scenario, Total Precipitation (PRCPTOT) shows a significant decreasing trend in the near future, mid-future, and far future and Moderate Rain (MR) shows a decreasing trend in the near future and far future of monsoon season. The findings reveal significant future trends in extreme precipitation, impacting Sustainable Development Goals (SDGs) achievement and providing crucial insights for sustainable water resource management and policy planning in the Kali River basin. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Adeyeri, O. E. (2025). Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways. Water, 17(15), 2247. https://doi.org/10.3390/w17152247

    African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins.

    Consulter sur www.mdpi.com
  • Santos, E. (2025). Nature-Based Solutions for Water Management in Europe: What Works, What Does Not, and What’s Next? Water, 17(15), 2193. https://doi.org/10.3390/w17152193

    Nature-based solutions (NbS) are increasingly recognized as strategic alternatives and complements to grey infrastructure for addressing water-related challenges in the context of climate change, urbanization, and biodiversity decline. This article presents a critical, theory-informed review of the state of NbS implementation in European water management, drawing on a structured synthesis of empirical evidence from regional case studies and policy frameworks. The analysis found that while NbS are effective in reducing surface runoff, mitigating floods, and improving water quality under low- to moderate-intensity events, their performance remains uncertain under extreme climate scenarios. Key gaps identified include the lack of long-term monitoring data, limited assessment of NbS under future climate conditions, and weak integration into mainstream planning and financing systems. Existing evaluation frameworks are critiqued for treating NbS as static interventions, overlooking their ecological dynamics and temporal variability. In response, a dynamic, climate-resilient assessment model is proposed—grounded in systems thinking, backcasting, and participatory scenario planning—to evaluate NbS adaptively. Emerging innovations, such as hybrid green–grey infrastructure, adaptive governance models, and novel financing mechanisms, are highlighted as key enablers for scaling NbS. The article contributes to the scientific literature by bridging theoretical and empirical insights, offering region-specific findings and recommendations based on a comparative analysis across diverse European contexts. These findings provide conceptual and methodological tools to better design, evaluate, and scale NbS for transformative, equitable, and climate-resilient water governance.

    Consulter sur www.mdpi.com
  • Zhou, S., Jia, W., Geng, X., Xu, H., Diao, H., Liu, Z., Wang, M., Fu, X., Wu, Y., Qiao, R., & Wu, Z. (2025). Quantifying the spatiotemporal dynamics of urban flooding susceptibility in the greater bay area under shared socio-economic pathways using the SD-PLUS-LightGBM framework. Resources, Conservation and Recycling, 223. https://doi.org/10.1016/j.resconrec.2025.108534

    Urbanization and climate change keep intensifying extreme rainfall events. Previous studies have explored urban flood susceptibility, yet a comprehensive approach that unifies these perspectives has remained underdeveloped. This study established a holistic framework using the SD-PLUS-LightGBM model with multiple variables under three SSP-RCP scenarios to predict spatial-temporal dynamics of flood susceptibility in the Greater Bay Area between 2030 and 2050. Compared with traditional models, LightGBM established superior predictive accuracy and operational reliability for urban flood susceptibility mapping. The results indicated a non-linear expansion of high-susceptibility zones, with SSP5–8.5 projections showing a two-fold increase in vulnerable areas by 2050 relative to 2020 baselines. Regions experiencing pronounced susceptibility transitions were expected to grow significantly (0.23 % of the total area), concentrated in historic urban cores and peri‑urban interfaces. This study offered an in-depth approach to stormwater management along with targeted recommendations for sustainable urban planning and design. © 2025

  • Areu-Rangel, O. S., Singh, A., & Bonasia, R. (2025). Multi-Criteria Decision Analysis for Managed Aquifer Recharge (MAR): A Flood-Responsive Approach in Milpa Alta, Mexico City. Environmental Quality Management, 35(1). https://doi.org/10.1002/tqem.70153

    Milpa Alta, located southeast of Mexico City, is a key region for environmental sustainability due to its volcanic soil, biodiversity, and critical role in aquifer recharge, which supports the city's water supply. However, rapid urbanization has severely impacted the area, causing reduced vegetation cover, increased runoff, and diminished groundwater recharge, which intensify flooding, soil erosion, and water scarcity. This study aims to identify optimal sites for managed aquifer recharge (MAR) structures in Milpa Alta through a multi-criteria analysis incorporating criteria such as topography, land use, proximity to urban areas, and drainage networks. Uniquely, hydraulic simulations of flood scenarios were integrated into the analysis to improve the precision of site selection. Geographic information systems (GIS) were used to assess and combine these criteria, providing a spatial evaluation of suitability. Results indicate that the central and northern regions of Milpa Alta, particularly around San Francisco Tecoxpa and San Antonio Tecómitl, are most suitable for MAR implementation due to their permeable soils, gentle slopes, and proximity to agricultural lands and drainage networks. These MAR structures can enhance groundwater recharge and mitigate flood risks during extreme rainfall events, with the potential to capture up to 300,000 m3 of surface runoff during a single high-intensity storm event. Despite its strengths, the study acknowledges limitations such as the absence of detailed water quality analyses and the need for sensitivity testing of the criteria weighting. This research provides an innovative approach to MAR site selection by integrating flood simulations, offering a replicable model for similar regions. Successful implementation of MAR in Milpa Alta requires addressing water quality concerns, engaging stakeholders, and ensuring compliance with regulatory frameworks. The findings emphasize MAR's potential to balance urbanization pressures with sustainable water management and flood mitigation strategies in Mexico City's rapidly developing areas. © 2025 Wiley Periodicals LLC.

  • Li, J., Pan, G., Chen, Y., Wang, X., Huang, P., Zhang, L., & Zhou, H. (2025). Rapid-Mapping Maximum Water Depth Map of Urban Flood Using a Highly Adaptable Machine Learning Based Model. Journal of Flood Risk Management, 18(3). https://doi.org/10.1111/jfr3.70095

    Rapid urban flood mapping is crucial for timely risk alerts and emergency relief. Machine learning (ML)-based mapping models emerge as a promising approach for fast, accurate inundation forecasts. However, current ML models often use precipitation features as inputs and predict maximum flood depth for all grid cells of a specific region simultaneously. This special design improves their prediction efficiency but limits their application in new regions. This study aims to create a highly adaptable, rapid urban maximum flood water depth mapping model based on the random forest regression algorithm and the extreme gradient boosting algorithm. Our mapping model additionally incorporates terrain and land-use features, besides the precipitation feature, as input variables and generates the maximum water depth only for a grid cell in each mapping. Thus, it can be unchangeably applied to the grid cells in a new area when the model is fully trained. In the case study of Shenzhen, China, our ML-based mapping model demonstrated excellent mapping ability in both training and validation sets. The coefficient of determination (R2) is consistently greater than or close to 95%. Furthermore, it revealed good generalization ability when directly applied to a new rainfall event (R2 = 0.875) and a new area (R2 = 0.810). Meanwhile, the time cost of the mapping model is less than 3 s, meeting the requirement for real-time mapping. These results indicate that this highly adaptable model, once appropriately trained, can be applied to rapid urban flood severity mapping, which significantly reduces its use cost in urban flood management. © 2025 The Author(s). Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.

  • Eichelmann, E., Naber, N., Battamo, A. Y., O’Sullivan, J. J., Salauddin, & Kelly-Quinn, M. (2025). A REVIEW OF THE IMPACT OF EXTREME WEATHER EVENTS ON FRESHWATER, TERRESTRIAL AND MARINE ECOSYSTEMS. Biology and Environment, 125 B, 101–134. https://doi.org/10.1353/bae.2025.a966125

    Extreme weather events (EWEs), including floods, droughts, heatwaves and storms, are increasingly recognised as major drivers of biodiversity loss and ecosystem degradation. In this systematic review, we synthesise 251 studies documenting the impacts of extreme weather events on freshwater, terrestrial and marine ecosystems, with the goal of informing effective conservation and management strategies for areas of special conservation or protection focus in Ireland.Twenty-two of the reviewed studies included Irish ecosystems. In freshwater systems, flooding (34 studies) was the most studied EWE, often linked to declines in species richness, abundance and ecosystem function. In terrestrial ecosystems, studies predominantly addressed droughts (60 studies) and extreme temperatures (48 studies), with impacts including increase in mortality, decline in growth and shift in species composition. Marine and coastal studies focused largely on storm events (33 studies), highlighting physical damages linked to wave actions, behavioural changes in macrofauna, changes in species composition and distribution, and loss in habitat cover. Results indicate that most EWEs lead to negative ecological responses, although responses are context specific.While positive responses to EWEs are rare, species with adaptive traits displayed some resilience, especially in ecosystems with high biodiversity or refuge areas.These findings underscore the need for conservation strategies that incorporate EWE projections, particularly for protected habitats and species. © 2025 Royal Irish Academy. All rights reserved.

  • Leclerc, T., Lessard, L., & Saint-Charles, J. (2024). Entendre et comprendre les expériences de désastre par la recherche narrative. Intervention, 159, 107–120. https://doi.org/10.7202/1111616ar

    Les événements météorologiques extrêmes (EME) et les désastres qu’ils entrainent provoquent des conséquences psychosociales qui sont modulées en fonction de différents facteurs sociaux. On constate aussi que les récits médiatiques et culturels qui circulent au sujet des EME ne sont pas représentatifs de l’ensemble des expériences de personnes sinistrées : celles qui en subissent les conséquences les plus sévères tendent aussi à être celles qu’on « entend » le moins dans l’espace public. Ces personnes sont ainsi susceptibles de vivre de l’injustice épistémique, ce qui a des effets délétères sur le soutien qu’elles reçoivent. Face à ces constats s’impose la nécessité de mieux comprendre la diversité des expériences d’EME et d’explorer des stratégies pour soutenir l’ensemble des personnes sinistrées dans leur rétablissement psychosocial. Cet article soutient que la recherche narrative peut contribuer à répondre à ces objectifs. En dépeignant des réalités multiples, la recherche narrative centrée sur les récits de personnes sinistrées présente aussi un intérêt significatif pour l’amélioration des pratiques d’intervention en contexte de désastre. , Extreme weather events (EWE) and their resulting disasters cause psychosocial consequences that are moderated by different social factors. Media and cultural accounts of EWEs do not represent the full range of disaster survivor experiences, that is, those who experienced the most severe consequences also tend to be those least “heard” in the public arena. These people are therefore most likely to experience forms of epistemic injustice that negatively impact the support offered to cope with disaster. Considering these findings, there is a need to better understand the diversity of EWE experiences and explore strategies for supporting all disaster survivors in their psychosocial recovery. This article argues that narrative research can help meet these needs. By portraying the multiple realities of people affected by EWEs, narrative research focusing on the stories of disaster survivors is also of significant interest for improving intervention practices in this context.

    Consulter sur id.erudit.org
  • Pechlivanidis, I. G., Du, Y., Bennett, J., Boucher, M.-A., Chang, A. Y. Y., Crochemore, L., Dasgupta, A., Di Baldassarre, G., Luterbacher, J., Pappenberger, F., Ramos, M.-H., Slater, L., Uhlenbrook, S., Wetterhall, F., Wood, A., Lavado-Casimiro, W., Yoshimura, K., Imhoff, R., Van Oevelen, P. J., … Werner, M. (2025). Enhancing Research-to-Operations in Hydrological Forecasting: Innovations across Scales and Horizons. Bulletin of the American Meteorological Society, 106(5), E894–E919. https://doi.org/10.1175/BAMS-D-24-0322.1

    Abstract Over the past 20 years, the Hydrological Ensemble Prediction Experiment (HEPEX) international community of practice has advanced the science and practice of hydrological ensemble prediction and its application in impact- and risk-based decision-making, fostering innovations through cutting-edge techniques and data that enhance water-related sectors. Here, we present insights from those 20 years on the key priorities for (co)creating broadly applicable hydrological forecasting systems that add value across spatial scales and time horizons. We highlight the advancement of hydrological forecasting chains through rigorous data management that incorporates diverse, high-quality data sources, data assimilation techniques, and the application of artificial intelligence (AI) to improve predictive accuracy. HEPEX has played a critical role in enhancing the reliability of water resources and water-related risk management globally by standardizing ensemble forecasting. This effort complements HEPEX’s broader initiative to strengthen research to operations, making innovative forecasting solutions both practical and accessible. Additionally, efforts have been made toward supporting the United Nations Early Warnings for All initiative through developing robust and reliable early warning systems by means of global training, education and capacity development, and the sharing of technology. Finally, we note that the integration of advanced science, user-centric methods, and global collaboration can provide a solid framework for improving the prediction and management of hydrological extremes, aligning forecasting systems with the dynamic needs of water resource and risk management in a changing climate. To effectively meet future demands, it is crucial to accelerate the integration of innovative science within operational frameworks, fostering adaptable and resilient hydrological forecasting systems globally.

    Consulter sur journals.ametsoc.org
  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-11-06 07 h 30 (UTC)

Explorer

Axes du RIISQ

  • 2 - enjeux de gestion et de gouvernance
  • 1 - aléas, vulnérabilités et exposition (56)
  • 3 - aspects biopsychosociaux (59)
  • 4 - réduction des vulnérabilités (39)
  • 5 - aide à la décision, à l’adaptation et à la résilience (44)

Enjeux majeurs

  • Inégalités et événements extrêmes
  • Prévision, projection et modélisation (22)
  • Risques systémiques (17)

Lieux

  • Canada (17)
  • États-Unis (11)
  • Québec (province) (11)
  • Europe (4)

Secteurs et disciplines

  • Nature et Technologie (59)
  • Société et Culture (41)
  • Santé (32)

Types d'événements extrêmes

  • Inondations et crues (51)
  • Évènements liés au froid (neige, glace) (40)
  • Sécheresses et canicules (14)
  • Feux de forêts (6)

Types d'inondations

  • Fluviales (19)
  • Submersion côtière (6)
  • Par embâcle (4)
  • Pluviales (4)

Type de ressource

  • Article de revue (63)
  • Chapitre de livre (1)
  • Prépublication (3)
  • Rapport (1)
  • Thèse (4)

Année de publication

  • Entre 2000 et 2025 (72)
    • Entre 2000 et 2009 (1)
      • 2007 (1)
    • Entre 2010 et 2019 (10)
      • 2012 (2)
      • 2016 (1)
      • 2018 (4)
      • 2019 (3)
    • Entre 2020 et 2025 (61)
      • 2020 (5)
      • 2021 (10)
      • 2022 (12)
      • 2023 (8)
      • 2024 (5)
      • 2025 (19)
      • 2026 (2)

Langue de la ressource

  • Anglais (48)
  • Français (3)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web