UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Axes du RIISQ
  • 2 - enjeux de gestion et de gouvernance
Enjeux majeurs
  • Risques systémiques

Résultats 71 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
Résumés
  • Performance Evaluation of Recently Constructed Ponds for Flood Mitigation in Erbil City and their Impacts on the Environment. (2025). Global NEST Journal. https://doi.org/10.30955/gnj.07248

    <p>This study investigates the performance of 35 recent ponds (which are under tendering, under construction, and finished in Erbil City), focusing on their role in flood mitigation across 11 distinct catchment areas. The total storage capacity of these ponds is approximately 9,926,394 m³, significantly enhancing the city's ability to manage stormwater runoff and reduce flood risks. The Watershed Modeling System (WMS), along with the Soil Conservation Service Curve Number (SCS-CN) method, was utilized for hydrological modeling to evaluate runoff behavior and water retention performance. Calculated Retention Capacity Ratio (RCR) values vary from as low as 21 % in the smallest system to 136 % in the Kasnazan catchment, with Chamarga similarly exceeding full capacity at 131 %. These over-capacity networks not only attenuate peak flows but also promote groundwater recharge, improve downstream water quality by trapping sediments and nutrients, and create valuable aquatic and riparian habitats. Our findings demonstrate the multifaceted benefits of high-capacity retention ponds and provide a replicable model for integrating green infrastructure into urban planning to build flood resilience and sustainable water management in rapidly urbanizing regions.</p>

    Consulter sur journal.gnest.org
  • Javidi Sabbaghian, R., Fereshtehpour, M., & Goli Hosseinabad, M. R. (2025). Integrated hydrologic-economic modeling for urban flood risk mitigation using SWMM, HEC-RAS, and HAZUS: a case study of the Bronx river watershed, NYC. Sustainable Water Resources Management, 11(5). https://doi.org/10.1007/s40899-025-01263-y

    Rapid urban expansion has significantly altered land use patterns, resulting in a decrease in pervious surface areas and a disruption of hydrologic connectivity between surface water and groundwater systems. Combined with inadequate drainage systems and poorly managed runoff, these changes have intensified urban flooding, leading to fatalities and significant infrastructure damage in many rapidly growing and climate-vulnerable urban areas around the world. This study presents an integrated economic-hydrologic model to assess the effectiveness of Low Impact Development (LID) measures—specifically permeable pavement, infiltration trenches, bio-retention cells, and rain barrels—in mitigating flood damage in the Bronx river watershed, NYC. The Storm Water Management Model (SWMM) was employed to simulate flood events and assess the effectiveness of various LIDs, applied individually and in combination, in reducing peak discharge. Flood inundation maps generated using HEC-GeoRAS were integrated with the HAZUS damage estimation model to quantify potential flood damages. A benefit-to-cost (BC) ratio was then calculated by comparing the monetary savings from reduced flood damage against the implementation costs of LID measures. Results indicate that the combined LID scenario offers the highest peak flow reduction, with permeable pavement alone reducing flow by 57%, outperforming other techniques under equal area coverage. Among all individual options, permeable pavement yields the highest cumulative BC ratio under all scenarios (4.6), whereas rain barrels are the least effective (2.6). The proposed evaluation framework highlights the importance of economic efficiency in flood mitigation planning and provides a structured foundation for informed decision-making to enhance urban resilience through LID implementation. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Soomro, S., Wei, H., Boota, M. W., Soomro, N.-E., Faisal, M., Nazli, S., sarwari, S., Shi, X., Hu, C., Guo, J., & Li, Y. (2025). River basin urban flood resilience: A multi-dimensional framework for risk mitigation to adaptive management and ecosystem protection under changing climate. Ecological Informatics, 91. https://doi.org/10.1016/j.ecoinf.2025.103412

    Study region: This study aims at the Kunhar River Basin, Pakistan, that has been facing repeated flood occurrences on a recurring basis. As the flood susceptibility of this area is high, its topographic complexity demands correct predictive modeling for strategic flood planning. Study focus: We developed a system of flood susceptibility mapping based on Geographic Information Systems (GIS), Principal Component Analysis (PCA), and Support Vector Machine (SVM) classification. Four kernel functions were applied, and the highest-performing was the Radial Basis Function (SVM-RBF). The model was validated and trained using historical flood inventories, morphometric parameters, and hydrologic variables, and feature dimensionality was reduced via PCA for increased efficiency. New hydrological insights: The SVM-RBF model recorded an AUC of 0.8341, 88.02% success, 84.97% predictability, 0.89 Kappa value, and F1-score of 0.86, all of which indicated high predictability. Error analysis yielded a PBIAS of +2.14%, indicating negligible overestimation bias but within limits acceptable in hydrological modeling. The results support the superiority of the SVM-RBF approach compared to conventional bivariate methods in modeling flood susceptibility over the complex terrain of mountains. The results can be applied in guiding evidence-based flood mitigation, land-use planning, and adaptive management in the Kunhar River Basin. © 2025 The Author(s)

  • Lhamidi, K., & El Khattabi, J. (2025). Enhancing the hydrological performance of Low Impact Development infrastructure through earthworm activity and vegetation dynamics for mitigating urban flooding. Ecological Engineering, 221. https://doi.org/10.1016/j.ecoleng.2025.107786

    Urban soil sealing and anthropogenic activities, combined with the increasing intensity of rainfall due to climate change, is a threat to urban environments, exacerbating flood risks. To assess these challenges, Low Impact Development strategies, based on Nature-based solutions, are a key solution to mitigate urban flooding. To enhance the hydrological performance of LID infrastructure, and to meet the guideline requirements related to emptying time, specifically in low hydraulic conductivity soils, earthworm activity and vegetation dynamics can play a major role. The ETAGEP experimental site was built to study to address those challenges. 12 swales (10 m2 infiltration area for each swale) were monitored to evaluate the impact of earthworm activity (A. caliginosa and L. terrestris) and vegetation dynamics (Rye Grass, Petasites hybridus and Salix alba) to enhance the hydrological performance. The infiltration rate of the swales evolved in a differentiated manner, with an increase of 16.1 % to 310.8 % and draining times decrease of 13.9 % to 75.7, depending on initial soil hydro-physical properties and the impervious areas of the catchment which influence runoff volumes. The simulations on SWMM software showed similar results, with an enhancement of the hydraulic conductivity of N6 swales (60 m2 total catchment area) increasing from 18 mm h−1 to 25 mm h−1, and a reduction of drawdown time by 24.4 % (N6) and 20.8 % (N11–110 m2 active surface). A simulated storm event of 44.8 mm resulted in an overflow of 2.12 m3 for the N11 swale configuration, while no overflow was observed for N6. These results highlight the ecosystem services of earthworms for a sustainable stormwater management in urban environments, enhancing the hydrological performance of LID infrastructures and reducing therefore flood risks and limiting pressure on drainage network. © 2025 The Author(s)

  • Mitali, P., Patel, N., Modi, K., & Patel, S. (2026). Predictive Modeling and Strategic Planning for Urban Flood Risk Mitigation. Commun. Comput. Info. Sci., 2619 CCIS, 188–199. https://doi.org/10.1007/978-3-032-00350-8_14

    Urban flooding threatens Indian cities and is made worse by rapid urbanization, climate change and poor infrastructure. Severe flooding occurred in cities such as Mumbai, Chennai and Ahmedabad. This has caused huge economic losses and displacement. This study addresses the limitations of traditional flood forecasting methods. It has to contend with the complex dynamics of urban flooding. We offer a deep learning approach which uses the network Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to improve flood risk prediction. Our CNN-LSTM model combines spatial data (water table, topography) and temporal data (historical model) to classify flood risk as low or high. This method includes collecting data pre-processing (MinMaxScaler, LabelEncoder) Modeling, Training and Evaluation. The results demonstrate the accuracy of flood risk predictions and provide insights into flexible strategies for urban flood management. This research highlights the role of data-driven approaches in improving urban planning to reduce flood risk in high-risk areas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

  • Kim, M.-K., & Xu, D. (2025). Seismic Performance Assessment of Gravity Dams for Urban Flood Risk Mitigation Using the Scaled Boundary Finite Element Method (SBFEM). Hydrology, 12(8). https://doi.org/10.3390/hydrology12080209

    Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical for regulating flood discharge, yet their seismic vulnerability poses significant challenges, particularly under compound effects involving concurrent seismic loading and climate-induced elevated reservoir levels. This study introduces a novel seismic analysis framework for gravity dams using the scaled boundary finite element method (SBFEM), which efficiently models dam–water and dam–foundation interactions in infinite domains. A two-dimensional numerical model of a concrete gravity dam, subjected to realistic seismic loading, was developed and validated against analytical solutions and conventional finite element method (FEM) results, achieving discrepancies as low as 0.95% for static displacements and 0.21% for natural frequencies. The SBFEM approach accurately captures hydrodynamic pressures and radiation damping, revealing peak pressures at the dam heel during resonance and demonstrating computational efficiency with significantly reduced nodal requirements compared to FEM. These findings enhance understanding of dam behavior under extreme loading. The proposed framework supports climate-adaptive design standards and integrated hydrological–structural modeling. By addressing the seismic safety of flood-control dams, this research contributes to the development of resilient urban water management systems capable of protecting metropolitan areas from compound climatic and seismic extremes. © 2025 by the authors.

  • Pachouri, V., Kothari, P., Kathuria, S., Gehlot, A., Singh, R., Thakur, A. K., Gupta, L. R., Dogra, S., Priyadarshi, N., & Mohamed, H. G. (2025). Revolutionizing urban water resilience: Innovative strategies and advancements in sustainable urban drainage systems (SuDS). Desalination and Water Treatment, 323. https://doi.org/10.1016/j.dwt.2025.101407

    Climate change and rapid urbanisation are straining urban stormwater management further, with floods and water pollution becoming more intense. SUDS is a nature-based alternative that solves these issues because it replicates natural hydrologic processes to create urban resilience. This systematic review summarises recent trends in SUDS technologies, performance, and policy frameworks, and their potential to mitigate flood risks, improve water quality, and enhance climate resilience. By the PRISMA methodology, 90 peer-reviewed studies published between 2014 and 2025 were considered, dealing with SUDS performance, cost-effectiveness, and overall difficulties with large-scale implementation of these systems. Main results are that bio-retention systems, permeable pavements, and green roofs are effective in controlling surface runoff and enhancing water quality. Moreover, the development of IoT-based monitoring and smart technologies has also considerably increased the scalability and efficiency of a SUDS. The review recommends the standardisation of SUDS performance, the incorporation of smart technologies, and more attractive policy incentives to speed up the uptake of SUDS in urban planning. One of the main contributions that this research is likely to make to the discourse concerning urban water resilience is that it offers evidence-based suggestions to policymakers and urban developers, and these suggestions argue in favour of taking urgent action in the area of climate adaptation by using SUDS extensively. © 2025 The Authors

  • Ogunbunmi, S., Chen, Y., Zhao, Q., Nagothu, D., Wei, S., Chen, G., & Blasch, E. (2025). Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges. Future Internet, 17(8). https://doi.org/10.3390/fi17080357

    Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. © 2025 by the authors.

  • Lee, T., & Ouarda, T. B. M. J. (2025). Climate teleconnection-driven stochastic simulation for future water-related risk management. Journal of Hydrology, 662, 133834. https://doi.org/10.1016/j.jhydrol.2025.133834

    Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.

    Consulter sur www.sciencedirect.com
  • Awad, M. M., & Homayouni, S. (2025). High-Resolution Daily XCH4 Prediction Using New Convolutional Neural Network Autoencoder Model and Remote Sensing Data. Atmosphere, 16(7), 806. https://doi.org/10.3390/atmos16070806

    Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).

    Consulter le document
  • Chengu, S., Assen, M., & Gebeyehu, E. (2025). Multi-criteria decision analysis for flood hazard mapping in the Itang watershed, lower Baro-Akobo Basin, Southwest Ethiopia. Discover Environment, 3(1). https://doi.org/10.1007/s44274-025-00289-5

    Flooding remains a critical hydrological hazard in the Itang watershed within the Lower Baro-Akobo Basin, requiring an in-depth assessment of flood susceptibility. This study employs a multi-criteria evaluation method, integrating key geospatial and hydrological parameters such as topographic slope, elevation, land use/land cover, River proximity, drainage network density, precipitation intensity, and soil properties. Utilizing a Multi-Criteria Decision Analysis (MCDA) approach within the ArcMap 10.3.1 environment, a flood hazard zonation map was generated, classifying the watershed into five risk categories: Very high, high, moderate, low, and very low. The findings reveal that approximately 69.69% of the watershed falls within the high to very high flood risk zones, predominantly influenced by low-lying Elevation, gentle slopes, proximity to the river, land cover dynamics, high drainage density, and precipitation variability. These insights emphasize the necessity of integrating robust flood mitigation measures, early warning mechanisms, and sustainable watershed management interventions to enhance flood resilience and reduce hydrological risks in the study watershed. © The Author(s) 2025.

  • Muhammed, S. P., Holla, B. R. K., Balakrishna, K., & Warrier, A. K. (2025). Developing rejuvenation strategies and artificial flood mitigation plans for Indrani River: a case study. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-12439-z

    Artificial flooding of rainwater is most common in urban areas due to various reasons, such as improper drainage systems, obstruction of natural drainage by building constructions, and encroachment of stormwater nallahs. Flash floods lead to significant losses, disrupt transportation, and cause inconvenience to the public. Udupi, characterized by its porous lateritic strata, undulating topography, and proximity to the sea, experiences artificial flooding during the peak monsoon season in its low-lying areas, primarily due to the overflow of the Indrani River, which is also a potential water resource for Udupi, Karnataka. Currently, the river faces significant challenges due to increasing anthropogenic activities. Revitalizing the Indrani River offers numerous benefits, including its potential use as a drinking water source during periods of water scarcity. This study aims to propose flood and stormwater management measures for the river catchment and to evaluate selected water quality parameters (pH, dissolved oxygen, and conductivity) at fifteen strategic locations along the river course. Higher conductivity observed at downstream stations is attributed to sewage discharge from urban settlements and a sewage treatment plant. The study suggests short-term measures such as targeted clean-up operations and stricter enforcement of pollution control regulations. Additionally, it recommends long-term strategies, including the development of a comprehensive river basin management plan, community engagement initiatives, and improvements to wastewater treatment infrastructure. To maintain the health of the Indrani River, this research emphasizes the importance of continuous monitoring and the implementation of integrated management practices. © The Author(s) 2025.

  • Guo, Z., Shi, X., Zhang, D., & Zhao, Q. (2026). Effects of long-term wetland variations on flood risk assessments in the Yangtze River Basin. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108123

    Flooding is the most frequent natural disaster in the Yangtze River Basin (YRB), causing significant socio-economic damages. In recent decades, abundant wetland resources in the YRB have experienced substantial changes and played a significant role in strengthening the hydrological resilience to flood risks. However, wetland-related approaches remain underdeveloped for mitigating flood risks in the YRB due to the lack of considering long-term wetland effects in the flood risk assessment. Therefore, this study develops an wetland-related GIS-based spatial multi-index flood risk assessment model by incorporating the effects of wetland variations, to investigate the long-term implications of wetland variations on flood risks, to identify dominant flood risk indicators under wetland effects, and to provide wetland-related flood risk management suggestions. These findings indicate that wetlands in the Taihu Lake Basin, Wanjiang Plain, Poyang Lake Basin, and Dongting and Honghu Lake Basin could enhance flood control capacity and reduce flood risks in most years between 1985 and 2021 except years with extreme flood disasters. Wetlands in the Sichuan Basin have aggravated but limited impacts on flood risks. Precipitation in the Taihu Lake Basin and Poyang Lake Basin, runoff and vegetation cover in the Wanjiang Plain, GDP in the Taihu Lake Basin, population density in the Taihu lake Basin, Dongting and Honghu Lake Basin, and the Sichuan Basin are dominant flood risk indicators under wetland effects. Reasonably managing wetlands, maximizing stormwater storage capacity, increasing vegetation coverage in urbanized and precipitated regions are feasible suggestions for developing wetland-related flood resilience strategies in the YRB. © 2025 The Authors

  • Maurya, O. P., Nandi, K. K., & Dutta, S. (2025). Harnessing Vegetation as a Nature-Based Solution for Integrated River Corridor Management: A Path Towards Harmonized Human–Nature Synergy. Ecohydrology, 18(5). https://doi.org/10.1002/eco.70094

    This review examines the role of vegetation as a nature-based solution (NBS) for sustainable river corridor management, integrating a wide range of interdisciplinary domains. It synthesizes studies addressing global challenges in river systems, the worldwide adoption of vegetation-based solutions and location-specific field observations from major Indian rivers such as the Brahmaputra and Ganga. This paper also reviews flume-scale experiments on vegetation–flow interactions and explores the biomechanical properties of vegetation, such as root reinforcement that contribute to riverbank stability. In addition, it discusses the selection of suitable species based on specific climatic regions, as reported in the literature. Building on this interdisciplinary understanding, this review highlights the vital role of vegetation in mitigating bank erosion, regulating sediment transport, attenuating floods and enhancing the overall health and resilience of riverine ecosystems and communities. It proposes an integrated framework that combines vegetation with biodegradable materials such as bamboo fencing and geo-bags and conventional engineering measures to address high-flow conditions and ensure long-term riverbank stability. Additionally, a flume-scale physical model study was conducted to investigate near-bank hydrodynamics in the presence of a series of three spurs and a combination of rigid and flexible vegetation. The results indicate that vegetation significantly reduces streamwise velocity near the bank, achieving performance comparable to that of the spur arrangement. This study identifies key challenges, including appropriate species selection, long-term maintenance of vegetation-based solutions and the need for adaptive management strategies. It further emphasizes the importance of stakeholder engagement for successful and sustainable implementation. © 2025 John Wiley & Sons Ltd.

  • Ahmad, R., Abdul Maulud, K. N., Bin Zamir, U., Mohd Razali, S. F., Yaseen, Z. M., Pradhan, B., Khan, M. N., & Eshquvvatov, B. (2025). A systematic literature review of digital elevation models and hydrological models integration for advanced flood risk management. Geomatics, Natural Hazards and Risk, 16(1). https://doi.org/10.1080/19475705.2025.2549487

    Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

  • Bakhtiari, V., Kerchi, H. D., Piadeh, F., Behzadian, K., & Nasirzadeh, F. (2025). Role of the internet of things in flood risk management: a critical review on current practices and future directions. Natural Hazards. https://doi.org/10.1007/s11069-025-07589-2

    The Internet of Things (IoT) has become increasingly important in flood risk management (FRM). This trend emerged as climate change intensified flooding events, driving the urgent need for localised early warning systems. Previous studies demonstrated the effectiveness of IoT sensors in forecasting potential floods and supporting flood modelling. However, comprehensive research addressing all FRM stages - prevention, mitigation, preparedness, response, and recovery - has remained limited. To address this research gap, this study identified five key IoT sensor categories: water quantity, water quality, rainfall intensity, weather conditions, and catchment characteristics. The roles, objectives, and applications of these sensors across FRM stages were then investigated. Results showed that water quantity sensors were the most common, accounting for 48% of documented IoT applications. Weather condition sensors (27%) and rainfall intensity sensors (21%) were also widely used, especially after 2021. Additionally, IoT-based FRM had three primary Objectives flood modelling (61%), alerting (25%), and visualisation (14%). Most cases (42%) focused on the preparedness stage, while prevention (8%) and recovery (5%) were underrepresented, highlighting clear gaps in existing research. The review also revealed several overlooked sensor types, including groundwater level, biochemical oxygen demand, and nitrite sensors. Despite their potential to enhance quality-based flood modelling, these sensors were rarely utilised. Consequently, the study emphasised the need for broader integration of IoT sensors throughout all FRM stages. Such integration could support more resilient, data-driven flood management strategies, particularly in regions where IoT deployment has remained limited. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.

  • Yu, Y., & Zhou, T. (2025). Research on the Comprehensive Evaluation Model of Risk in Flood Disaster Environments. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152178

    Losses from floods and the wide range of impacts have been at the forefront of hazard-triggered disasters in China. Affected by large-scale human activities and the environmental evolution, China’s defense flood situation is undergoing significant changes. This paper constructs a comprehensive flood disaster risk assessment model through systematic analysis of four key factors—hazard (H), exposure (E), susceptibility/sensitivity (S), and disaster prevention capabilities (C)—and establishes an evaluation index system. Using the Analytic Hierarchy Process (AHP), we determined indicator weights and quantified flood risk via the following formula R = H × E × V × C. After we applied this model to 16 towns in coastal Zhejiang Province, the results reveal three distinct risk tiers: low (R < 0.04), medium (0.04 ≤ R ≤ 0.1), and high (R > 0.1). High-risk areas (e.g., Longxi and Shitang towns) are primarily constrained by natural hazards and socioeconomic vulnerability, while low-risk towns benefit from a robust disaster mitigation capacity. Risk typology analysis further classifies towns into natural, social–structural, capacity-driven, or mixed profiles, providing granular insights for targeted flood management. The spatial risk distribution offers a scientific basis for optimizing flood control planning and resource allocation in the district. © 2025 by the authors.

  • Zhang, M., Chi, B., Gu, H., Zhou, J., Chen, H., Wang, W., Wang, Y., Chen, J., Yang, X., & Zhang, X. (2025). Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152352

    The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. © 2025 by the authors.

  • Yang, X., Liu, C., Pan, L., Su, X., He, K., & Mao, Z. (2025). Identification of Critical Exposed Elements and Strategies for Mitigating Secondary Hazards in Flood-Induced Coal Mine Accidents. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152181

    Natech events, involving multi-hazard coupling and cascading effects, pose serious threats to coal mine safety. This paper addresses flood-induced Natech scenarios in coal mining and introduces a two-stage cascading analysis framework based on hazard systems theory. A tri-layered network—comprising natural hazards, exposed elements, and secondary hazards—models hazard propagation. In Stage 1, an improved adjacency information entropy algorithm with multi-hazard coupling coefficients identifies critical exposed elements. In Stage 2, Dijkstra’s algorithm extracts key risk transmission paths. A dual-dimensional classification method, based on entropy and transmission risk, is then applied to prioritize emergency responses. This method integrates the criticality of exposed elements with the risk levels associated with secondary disaster propagation paths. Case studies validate the framework, revealing: (1) Hierarchical heterogeneity in the network, with surface facilities and surrounding hydrological systems as central hubs; shaft and tunnel systems and surrounding geological systems are significantly affected by propagation from these core nodes, exhibiting marked instability. (2) Strong risk polarization in secondary hazard propagation, with core-node-originated paths being more efficient and urgent. (3) The entropy-risk classification enables targeted hazard control, improving efficiency. The study proposes chain-breaking strategies for precise, hierarchical, and timely emergency management, enhancing coal mine resilience to flood-induced Natech events. © 2025 by the authors.

  • Rahmawati, Tumpu, M., & Yunianta, A. (2025). Hydrodynamic and Sedimentological Impacts of Intake Gate Opening Adjustments for Flood Mitigation in Water Systems. Engineering, Technology and Applied Science Research, 15(4), 25438–25444. https://doi.org/10.48084/etasr.10729

    Sediment management poses a significant challenge in hydraulic systems, affecting the water flow efficiency, structural durability, and operational reliability. The operation of the intake gate greatly influences the sediment characteristics, including the transport, deposition, and distribution patterns. This study investigates how different intake gate openings impact the sediment behavior in hydraulic systems to improve the operational strategies and reduce sediment-related problems. An experimental method was employed using a scaled physical model in controlled laboratory conditions, where various intake gate configurations were tested at consistent flow rates to simulate real-world hydraulic structures. Sediment samples were analyzed for grain size distribution, deposition patterns, and transport process dynamics. Data were gathered through direct measurements and video recordings, and then processed using sediment analysis software. The results showed that larger intake openings promote the sediment transport downstream and reduce the localized deposition near the intake. Conversely, smaller openings lead to sediment accumulation at the gate, increasing the risk of blockage and operational inefficiencies. Over time, these patterns evolve, potentially causing long-term sediment accumulation or channel scouring depending on the frequency and the way the gate is adjusted. Based on these findings, the study proposes adaptive, long-term sediment management approaches, including periodic gate operation adjustments, sediment flushing protocols, and comprehensive monitoring systems. These strategies aim to balance the sediment transport and deposition over extended operational periods, enhancing the performance and sustainability of hydraulic infrastructure, such as irrigation channels, reservoirs, and hydropower plants. © 2025, Dr D. Pylarinos. All rights reserved.

  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-09-20 06 h 52 (UTC)

Explorer

Axes du RIISQ

  • 2 - enjeux de gestion et de gouvernance
  • 1 - aléas, vulnérabilités et exposition (61)
  • 3 - aspects biopsychosociaux (61)
  • 4 - réduction des vulnérabilités (41)
  • 5 - aide à la décision, à l’adaptation et à la résilience (52)

Enjeux majeurs

  • Risques systémiques
  • Prévision, projection et modélisation (20)
  • Inégalités et événements extrêmes (17)

Lieux

  • Canada (18)
  • Québec (province) (14)
  • États-Unis (10)
  • Europe (5)

Secteurs et disciplines

  • Nature et Technologie (63)
  • Société et Culture (37)
  • Santé (35)

Types d'événements extrêmes

  • Inondations et crues (62)
  • Évènements liés au froid (neige, glace) (33)
  • Sécheresses et canicules (7)
  • Feux de forêts (3)

Types d'inondations

  • Fluviales (23)
  • Par embâcle (7)
  • Submersion côtière (5)
  • Pluviales (4)

Type de ressource

  • Article de colloque (2)
  • Article de revue (61)
  • Prépublication (3)
  • Rapport (1)
  • Thèse (4)

Année de publication

  • Entre 2000 et 2025 (71)
    • Entre 2010 et 2019 (9)
      • 2011 (1)
      • 2013 (1)
      • 2015 (1)
      • 2016 (2)
      • 2018 (2)
      • 2019 (2)
    • Entre 2020 et 2025 (62)
      • 2020 (2)
      • 2021 (7)
      • 2022 (6)
      • 2023 (11)
      • 2024 (6)
      • 2025 (28)
      • 2026 (2)

Langue de la ressource

  • Anglais (50)
  • Français (4)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web