UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Veille bibliographique sur les inondations
UQAM logo
Veille bibliographique sur les inondations
  • Bibliography
  1. Vitrine des bibliographies
  2. Veille bibliographique sur les inondations
  3. Résultats
Veille bibliographique sur les inondationsVeille bibliographique sur les inondations
  • Bibliography

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans les années de publication : repère vos mots-clés dans le champ d’année de publication (vous pouvez utiliser l’opérateur OU avec vos mots-clés pour trouver des références ayant différentes années de publication. Par exemple, 2020 OU 2021).
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Axes du RIISQ
  • 2 - enjeux de gestion et de gouvernance
Enjeux majeurs
  • Prévision, projection et modélisation

Résultats 63 ressources

Recently addedDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
Résumés
  • Soomro, S., Wei, H., Boota, M. W., Soomro, N.-E., Faisal, M., Nazli, S., sarwari, S., Shi, X., Hu, C., Guo, J., & Li, Y. (2025). River basin urban flood resilience: A multi-dimensional framework for risk mitigation to adaptive management and ecosystem protection under changing climate. Ecological Informatics, 91. https://doi.org/10.1016/j.ecoinf.2025.103412

    Study region: This study aims at the Kunhar River Basin, Pakistan, that has been facing repeated flood occurrences on a recurring basis. As the flood susceptibility of this area is high, its topographic complexity demands correct predictive modeling for strategic flood planning. Study focus: We developed a system of flood susceptibility mapping based on Geographic Information Systems (GIS), Principal Component Analysis (PCA), and Support Vector Machine (SVM) classification. Four kernel functions were applied, and the highest-performing was the Radial Basis Function (SVM-RBF). The model was validated and trained using historical flood inventories, morphometric parameters, and hydrologic variables, and feature dimensionality was reduced via PCA for increased efficiency. New hydrological insights: The SVM-RBF model recorded an AUC of 0.8341, 88.02% success, 84.97% predictability, 0.89 Kappa value, and F1-score of 0.86, all of which indicated high predictability. Error analysis yielded a PBIAS of +2.14%, indicating negligible overestimation bias but within limits acceptable in hydrological modeling. The results support the superiority of the SVM-RBF approach compared to conventional bivariate methods in modeling flood susceptibility over the complex terrain of mountains. The results can be applied in guiding evidence-based flood mitigation, land-use planning, and adaptive management in the Kunhar River Basin. © 2025 The Author(s)

  • Mitali, P., Patel, N., Modi, K., & Patel, S. (2026). Predictive Modeling and Strategic Planning for Urban Flood Risk Mitigation. Commun. Comput. Info. Sci., 2619 CCIS, 188–199. https://doi.org/10.1007/978-3-032-00350-8_14

    Urban flooding threatens Indian cities and is made worse by rapid urbanization, climate change and poor infrastructure. Severe flooding occurred in cities such as Mumbai, Chennai and Ahmedabad. This has caused huge economic losses and displacement. This study addresses the limitations of traditional flood forecasting methods. It has to contend with the complex dynamics of urban flooding. We offer a deep learning approach which uses the network Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to improve flood risk prediction. Our CNN-LSTM model combines spatial data (water table, topography) and temporal data (historical model) to classify flood risk as low or high. This method includes collecting data pre-processing (MinMaxScaler, LabelEncoder) Modeling, Training and Evaluation. The results demonstrate the accuracy of flood risk predictions and provide insights into flexible strategies for urban flood management. This research highlights the role of data-driven approaches in improving urban planning to reduce flood risk in high-risk areas. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

  • Le, T. T., Vo, T. Q., & Kim, J. (2025). An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth. Mathematics, 13(16). https://doi.org/10.3390/math13162617

    This study presents a novel bivariate-output deep learning framework based on LeNet-5 for the simultaneous prediction of urban flood susceptibility and inundation depth in Seoul, South Korea. Unlike previous studies that relied on single-output models, the proposed approach jointly learns classification and regression targets through a shared feature extraction structure, enhancing consistency and generalization. Among six tested architectures, the Le5SD_CBAM model—integrating a Convolutional Block Attention Module (CBAM)—achieved the best performance, with 83% accuracy, an Area Under the ROC Curve (AUC) of 0.91 for flood susceptibility classification, and a mean absolute error (MAE) of 0.12 m and root mean squared error (RMSE) of 0.18 m for depth estimation. The model’s spatial predictions aligned well with hydrological principles and past flood records, accurately identifying low-lying flood-prone zones and capturing localized inundation patterns influenced by infrastructure and micro-topography. Importantly, it detected spatial mismatches between susceptibility and depth, demonstrating the benefit of joint modeling. Variable importance analysis highlighted elevation as the dominant predictor, while distances to roads, rivers, and drainage systems were also key contributors. In contrast, secondary terrain attributes had limited influence, indicating that urban infrastructure has significantly altered natural flood flow dynamics. Although the model lacks dynamic forcings such as rainfall and upstream inflows, it remains a valuable tool for flood risk mapping in data-scarce settings. The bivariate-output framework improves computational efficiency and internal coherence compared to separate single-task models, supporting its integration into urban flood management and planning systems. © 2025 by the authors.

  • Zerouali, B., Almaliki, A. H., & Santos, C. A. G. (2025). Flood susceptibility mapping in arid urban areas using SHAP-enhanced stacked ensemble learning: A case study of Jeddah. Journal of Environmental Management, 393. https://doi.org/10.1016/j.jenvman.2025.127128

    Flooding is an escalating hazard in arid and rapidly urbanizing environments such as Jeddah, Saudi Arabia, where the lack of historical flood records and sparse monitoring systems challenge effective risk prediction. To address this gap, this study aims to develop an accurate and interpretable flood susceptibility-mapping framework tailored to data-scarce urban settings. The research integrates a stacked ensemble model—comprising machine learning: XGBoost, CatBoost, and Histogram-based Gradient Boosting (HGB)—with SHapley Additive exPlanations (SHAP) to enhance prediction accuracy and model transparency. Random Forest was excluded from the final model stack due to inferior classification performance. A diverse set of geospatial inputs, including digital elevation model, slope, flow direction, Curve Number, topographic indices, and LULC (from ESRI Sentinel-2) were used as predictors. Furthermore, 92 and 198 flooded and non-flooded points were used for model validation. The model achieved strong predictive performance (AUC = 0.92, Accuracy = 0.82) on the validation set. In the absence of official flood records, model outputs were intersected with road network data to identify 395 road points in highly susceptible zones. Although these points do not represent a formal validation dataset—due to the general lack of detailed flood event records in the region, particularly in relation to infrastructure—they provide a valuable proxy for identifying flood-prone road segments. SHAP explainability analysis revealed that TRI, TPI, and distance to rivers were the most globally influential features, while Curve Number and LULC were key drivers of high-risk predictions. The model mapped 139 km2 (8.7 %) of the area as very high flood susceptibility and 325 km2 (20.3 %) as high susceptibility, outperforming individual learners. These results confirm that stacked ensemble learning, paired with explainable AI and creative validation strategies, can produce reliable flood susceptibility maps even in data-constrained contexts. This framework offers a transferable and scalable solution for flood risk assessment in similar arid and urbanizing environments. © 2025 Elsevier Ltd

  • Ogunbunmi, S., Chen, Y., Zhao, Q., Nagothu, D., Wei, S., Chen, G., & Blasch, E. (2025). Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges. Future Internet, 17(8). https://doi.org/10.3390/fi17080357

    Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. © 2025 by the authors.

  • Uddameri, V., & Hernandez, E. A. (2025). Machine Learning for Flood Resiliency—Current Status and Unexplored Directions. Environments - MDPI, 12(8). https://doi.org/10.3390/environments12080259

    A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors. © 2025 by the authors.

  • Lee, T., & Ouarda, T. B. M. J. (2025). Climate teleconnection-driven stochastic simulation for future water-related risk management. Journal of Hydrology, 662, 133834. https://doi.org/10.1016/j.jhydrol.2025.133834

    Water risk management has been adversely affected by climate variations, including recent climate change. Climate variations have highly impacted the hydrological cycles in the atmosphere and biosphere, and their impact can be defined with the teleconnection between climate signals and hydrological variables. Water managers should practice future risk management to mitigate risks, including the impact of teleconnection, and stochastically simulated scenarios can be employed as an effective tool to take advantage of water management preparation. A stochastic simulation model for hydrological variables teleconnected with climate signals is very useful for water managers. Therefore, the objective of the current study was to develop a novel stochastic simulation model for the simulation of synthetic series teleconnected with climate signals. By jointly decomposing the hydrological variables and a climate signal with bivariate empirical mode decomposition (BEMD), the bivariate nonstationary oscillation resampling (B-NSOR) model was applied to the significant components. The remaining components were simulated with the newly developed method of climate signal-led K-nearest neighbor-based local linear regression (CKLR). This entire approach is referred to as the climate signal-led hydrologic stochastic simulation (CSHS) model. The key statistics were estimated from the 200 simulated series and compared with the observed data, and the results showed that the CSHS model could reproduce the key statistics including extremes while the SML model showed slight underestimation in the skewness and maximum values. Additionally, the observed long-term variability of hydrological variables was reproduced well with the CSHS model by analyzing drought statistics. Moreover, the Hurst coefficient with slightly higher than 0.8 was fairly preserved by the CSHS model while the SML model is underestimated as 0.75. The overall results demonstrate that the proposed CSHS model outperformed the existing shifting mean level (SML) model, which has been used to simulate hydroclimatological variables. Future projections until 2100 were obtained with the CSHS model. The overall results indicated that the proposed CSHS model could represent a reasonable alternative to teleconnect climate signals with hydrological variables.

    Consulter sur www.sciencedirect.com
  • Awad, M. M., & Homayouni, S. (2025). High-Resolution Daily XCH4 Prediction Using New Convolutional Neural Network Autoencoder Model and Remote Sensing Data. Atmosphere, 16(7), 806. https://doi.org/10.3390/atmos16070806

    Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb).

    Consulter le document
  • Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Ali, F., Pradhan, B., & Choi, S.-M. (2025). Optimizing ensemble learning for satellite-based multi-hazard monitoring and susceptibility assessment of landslides, land subsidence, floods, and wildfires. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-15381-2

    The preparation of accurate multi-hazard susceptibility maps is essential to effective disaster risk management. Past studies have relied mainly on traditional machine learning models, but these models do not perform well for complex spatial patterns. To address this gap, this study uses two meta-heuristic algorithms (Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)) to provide an optimized Random Forest (RF) model with better predictive ability. We focus on four significant hazards—landslides, land subsidence, wildfires, and floods—in Kurdistan Province, Iran, using Sentinel-1 and Sentinel-2 satellite imagery collected between 2015 and 2022. Furthermore, two models of RF-GA and RF-PSO were utilized to create multi-hazard susceptibility, which were evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). The RF-GA algorithm achieved 91.1% accuracy for flood hazards, 83.8% for wildfires, and 99.1% for landslide hazards. In contrast, utilizing RF-PSO resulted in a 95.9% accuracy for land subsidence hazards. The combined RF-GA algorithm demonstrated superior accuracy to individual RF modeling techniques. Furthermore, eastern regions are more prone to floods and land subsidence, whereas western areas face more significant risks from landslides and wildfires. Additionally, floods and land subsidence exhibit a considerable correlation, impacting each other’s occurrence, while wildfires and landslides demonstrate interacting dynamics, influencing each other’s likelihood of occurrence. © The Author(s) 2025.

  • Schulte, L., Santisteban, J. I., Fuller, I. C., & Ballesteros-Cánovas, J. A. (2025). Editorial preface to special issue: Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events. Global and Planetary Change, 254. https://doi.org/10.1016/j.gloplacha.2025.105021

    Floods constitute the most significant natural hazard to societies worldwide. Population growth and unchecked development have led to floodplain encroachment. Modelling suggests that climate change will regionally intensify the threat posed by future floods, with more people in harm's way. From a global change perspective, past flood events and their spatial-temporal patterns are of particular interest because they can be linked to former climate patterns, which can be used to guide future climate predictions. Millennial and centennial time series contain evidence of very rare extreme events, which are often considered by society as ‘unprecedented’. By understanding their timing, magnitude and frequency in conjunction with prevailing climate regime, we can better forecast their future occurrence. This Virtual Special Issue (VSI) entitled Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting “unpredecented” future events comprises 14 papers that focus on how centennial and millennia-scale natural and documentary flood archives help improve future flood science. Specifically, documentation of large and very rare flood episodes challenges society's lack of imagination regarding the scale of flood disasters that are possible (what we term here, the “unknown unknowns”). Temporal and spatial flood behaviour and related climate patterns as well as the reconstruction of flood propagation in river systems are important foci of this VSI. These reconstructions are crucial for the provision of robust and reliable data sets, knowledge and baseline information for future flood scenarios and forecasting. We argue that it remains difficult to establish analogies for understanding flood risk during the current period of global warming. Most studies in this VSI suggest that the most severe flooding occurred during relatively cool climate periods, such as the Little Ice Age. However, flood patterns have been significantly altered by land use and river management in many catchments and floodplains over the last two centuries, thereby obscuring the climate signal. When the largest floods in instrumental records are compared with paleoflood records reconstructed from natural and documentary archives, it becomes clear that precedent floods should have been considered in many cases of flood frequency analysis and flood risk modelling in hydraulic infrastructure. Finally, numerical geomorphological analysis and hydrological simulations show great potential for testing and improving our understanding of the processes and factors involved in the temporal and spatial behaviour of floods. © 2025 The Authors

  • Qiu, Y., Shi, X., & He, X. (2026). Enhancing flood prediction in the Lower Mekong River Basin by scale-independent interpretable deep learning model. Environmental Impact Assessment Review, 116. https://doi.org/10.1016/j.eiar.2025.108130

    Climate change has increased the frequency and intensity of extreme floods in the Lower Mekong River Basin (LMB). This study leverages the Long Short-Term Memory (LSTM) model to evaluate its performance in predicting river discharge across the LMB and to identify the key variables contributing to flood prediction through SHapley Additive exPlanation (SHAP) and Universal Multifractal (UM) analyses, in a scale-dependent and scale-independent manner, respectively. The performance of the LSTM model is satisfactory, with Nash–Sutcliffe Efficiency (NSE) values exceeding 0.9 for all subbasins when using all input features. The model tends to underestimate the largest peak flows in the midstream subbasins that experienced extreme rainfall events. According to SHAP, soil-related variables are important contributors to discharge prediction, with their impacts partially manifested through interactions with precipitation and runoff. Furthermore, the dominant contributing variables influencing flood prediction vary over time: soil-related variables and vegetation-related variables played a more significant role in earlier years, whereas hydrometeorological variables became more dominant after 2017. The UM analysis investigates the scaling behaviours of contributing variables, showing that hydrometeorological-related variables have a greater influence on predicting extreme discharge across the small temporal scales. Additionally, the UM analysis indicates that the model's performance improves as the temporal variability in extremes of the combined features decreases across 1 to 16 days. Overall, this study provides a comprehensive assessment of the LSTM model's performance in discharge prediction, emphasising the impact of the variability in the extremes of combined features through the scale-independent interpretation. These findings will offer valuable insights for stakeholders to improve flood risk management across the LMB. © 2025 The Authors

  • Ahmad, R., Abdul Maulud, K. N., Bin Zamir, U., Mohd Razali, S. F., Yaseen, Z. M., Pradhan, B., Khan, M. N., & Eshquvvatov, B. (2025). A systematic literature review of digital elevation models and hydrological models integration for advanced flood risk management. Geomatics, Natural Hazards and Risk, 16(1). https://doi.org/10.1080/19475705.2025.2549487

    Floods are one of the most prevalent natural disasters, and advancements in geospatial technologies have revolutionized flood management, particularly the use of Digital Elevation Models (DEMs) in hydrological modelling. However, a comprehensive analysis DEMs integration in flood risk management is lacking. This study addresses this gap through a thorough Systematic Literature Review focusing on the combined application of DEMs and hydrological models in flood mitigation and risk management. The SLR scrutinized 21 articles, revealing eight key themes: DEM data sources and characteristics, DEM integration with hydrological models, flood hazard mapping applications, terrain impact assessment, model performance evaluation, machine learning in flood management, ecosystem services and resilience, and policy and governance implications. These findings emphasize the importance of precise DEM selection and correction for successful flood modelling, highlighting Advanced Land Observing Satellite as the most effective freely available DEM for use with the HEC-RAS unsteady flood model. This integration significantly enhances flood mitigation efforts and strengthens management strategies. Finally, this study underscores the pivotal role of DEM integration in crafting effective flood mitigation strategies, especially in addressing climate change challenges and bolstering community and ecosystem resilience. © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

  • Zhang, M., Chi, B., Gu, H., Zhou, J., Chen, H., Wang, W., Wang, Y., Chen, J., Yang, X., & Zhang, X. (2025). Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning. Water (Switzerland), 17(15). https://doi.org/10.3390/w17152352

    The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. © 2025 by the authors.

  • Kumar, G. P., & Dwarakish, G. S. (2025). Machine learning-based ensemble of Global climate models and trend analysis for projecting extreme precipitation indices under future climate scenarios. Environmental Monitoring and Assessment, 197(9). https://doi.org/10.1007/s10661-025-14469-6

    Monitoring changes in climatic extremes is vital, as they influence current and future climate while significantly impacting ecosystems and society. This study examines trends in extreme precipitation indices over an Indian tropical river basin, analyzing and ranking 28 Coupled Model Intercomparison Project Phase 6 (CMIP6) Global Climate Models (GCMs) based on their performance against India Meteorological Department (IMD) data. The top five performing GCMs were selected to construct multi-model ensembles (MMEs) using Machine Learning (ML) algorithms, Random Forest (RF), Support Vector Machine (SVM), Multiple Linear Regression (MLR), and the Arithmetic Mean. Statistical metrics reveal that the application of an RF model for ensembling performs better than other models. The analysis focused on six IMD-convention indices and eight indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). Future projections were examined for three timeframes: near future (2025–2050), mid-future (2051–2075), and far future (2076–2100) for SSP245 and SSP585 scenarios. Statistical trend analysis, the Mann-Kendall test, Sen’s Slope estimator, and Innovative Trend Analysis (ITA), were applied to the MME to assess variability and detect changes in extreme precipitation trends. Compared to SSP245, in the SSP585 scenario, Total Precipitation (PRCPTOT) shows a significant decreasing trend in the near future, mid-future, and far future and Moderate Rain (MR) shows a decreasing trend in the near future and far future of monsoon season. The findings reveal significant future trends in extreme precipitation, impacting Sustainable Development Goals (SDGs) achievement and providing crucial insights for sustainable water resource management and policy planning in the Kali River basin. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.

  • Adeyeri, O. E. (2025). Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways. Water, 17(15), 2247. https://doi.org/10.3390/w17152247

    African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins.

    Consulter sur www.mdpi.com
  • Zhou, S., Jia, W., Geng, X., Xu, H., Diao, H., Liu, Z., Wang, M., Fu, X., Wu, Y., Qiao, R., & Wu, Z. (2025). Quantifying the spatiotemporal dynamics of urban flooding susceptibility in the greater bay area under shared socio-economic pathways using the SD-PLUS-LightGBM framework. Resources, Conservation and Recycling, 223. https://doi.org/10.1016/j.resconrec.2025.108534

    Urbanization and climate change keep intensifying extreme rainfall events. Previous studies have explored urban flood susceptibility, yet a comprehensive approach that unifies these perspectives has remained underdeveloped. This study established a holistic framework using the SD-PLUS-LightGBM model with multiple variables under three SSP-RCP scenarios to predict spatial-temporal dynamics of flood susceptibility in the Greater Bay Area between 2030 and 2050. Compared with traditional models, LightGBM established superior predictive accuracy and operational reliability for urban flood susceptibility mapping. The results indicated a non-linear expansion of high-susceptibility zones, with SSP5–8.5 projections showing a two-fold increase in vulnerable areas by 2050 relative to 2020 baselines. Regions experiencing pronounced susceptibility transitions were expected to grow significantly (0.23 % of the total area), concentrated in historic urban cores and peri‑urban interfaces. This study offered an in-depth approach to stormwater management along with targeted recommendations for sustainable urban planning and design. © 2025

  • Mok, J.-Y., Moon, H.-T., Kim, G.-H., Kim, K.-T., & Moon, Y.-I. (2025). Deep learning-enhanced flood damage prediction: A DFNN-based hybrid approach with simplified inputs. International Journal of Disaster Risk Reduction, 128. https://doi.org/10.1016/j.ijdrr.2025.105743

    This study proposes a hybrid urban flood damage prediction framework that integrates a Deep Feed-Forward Neural Network (DFNN) with a Rainfall-Runoff (R-R) model and the Korean Flood Risk Assessment Model (K-FRM). The model predicts 10 types of flood risk indicators (FRIs), including damage to residential and non-residential buildings, using only simplified rainfall variables (SRVs), eliminating the need for complex hydrodynamic simulations. Synthetic rainfall scenarios were generated for training and fed into the R-R model, whose outputs were processed through K-FRM to produce training data for the DFNN model. The optimized DFNN model was validated by comparing its predictions with flood damage estimates from K-FRM, demonstrating a Nash-Sutcliffe Efficiency (NSE) of up to 0.87 and an R2 of up to 0.88, indicating strong predictive performance across flood risk indicators. These results highlight the effectiveness of the DFNN-based hybrid approach in capturing flood damage patterns and providing rapid predictions using forecasted rainfall data. The proposed method offers a practical and computationally efficient tool for urban flood risk management and disaster mitigation planning. © 2025 The Authors

  • Devi, K., Reddy, C. C., Rahul, K., Khuntia, J. R., & Das, B. S. (2025). A holistic methodology for evaluating flood vulnerability, generating flood risk map and conducting detailed flood inundation assessment. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-13025-z

    Flood risk assessment (FRA) is a process of evaluating potential flood damage by considering vulnerability of exposed elements and consequences of flood events through risk analysis which recommends the mitigation measures to reduce the impact of floods. This flood risk analysis is a technique used to identify and rank the level of flood risk through modeling and spatial analysis. In the present study, Musi River in the Osmansagar basin is taken in to consideration to evaluate the flood risk, which is located at Hyderabad. The input data collected for the study encompasses Hydrological and Meteorological datasets from Gandipet Guage station in Hyderabad, raster grid data for Osmansagar basin along with several indicators data influencing flood vulnerability. The primary research objective is to conduct a quantitative assessment of the Flood vulnerability index (FVI), to develop a comprehensive flood risk map and to evaluate the magnitude of damaging flood parameters, inundated volume and to analyze the regions inundated in the study area. In risk analysis, FVI determines the degree of which an area is susceptible to the negative impact of flood through various influencing indicators, Flood hazard map segregate the regions based on flood risk level through spatial analysis in Arc-GIS. A part of this study includes an integrated methodology for assessing flood inundation using Quantum Geographic Information Systems (QGIS) data modelling for spatial analysis, Hydraulic Engineering Center’s River Analysis System (HEC-RAS) hydraulic modelling for unsteady flow analysis and a machine learning technique i.e. XGBoost, to enhance the accuracy and efficiency of flood risk assessment. Subsequently, inundation map produced using HEC-RAS is superimposed with building footprints to identify vulnerable structures. The results obtained by risk analysis using hydraulic modeling, GIS analysis, and machine learning technique illustrates the flood vulnerability, areas having high flood risk and inundated volume along with predicted flood levels for next 10 years. These findings demonstrate the efficiency of the holistic approach in identifying vulnerability, flood-prone areas and evaluating potential impacts on infrastructure and communities. The outcomes of the study assist the decision-makers to gain valuable insights into flood risk management strategies. © The Author(s) 2025.

  • Li, J., Pan, G., Chen, Y., Wang, X., Huang, P., Zhang, L., & Zhou, H. (2025). Rapid-Mapping Maximum Water Depth Map of Urban Flood Using a Highly Adaptable Machine Learning Based Model. Journal of Flood Risk Management, 18(3). https://doi.org/10.1111/jfr3.70095

    Rapid urban flood mapping is crucial for timely risk alerts and emergency relief. Machine learning (ML)-based mapping models emerge as a promising approach for fast, accurate inundation forecasts. However, current ML models often use precipitation features as inputs and predict maximum flood depth for all grid cells of a specific region simultaneously. This special design improves their prediction efficiency but limits their application in new regions. This study aims to create a highly adaptable, rapid urban maximum flood water depth mapping model based on the random forest regression algorithm and the extreme gradient boosting algorithm. Our mapping model additionally incorporates terrain and land-use features, besides the precipitation feature, as input variables and generates the maximum water depth only for a grid cell in each mapping. Thus, it can be unchangeably applied to the grid cells in a new area when the model is fully trained. In the case study of Shenzhen, China, our ML-based mapping model demonstrated excellent mapping ability in both training and validation sets. The coefficient of determination (R2) is consistently greater than or close to 95%. Furthermore, it revealed good generalization ability when directly applied to a new rainfall event (R2 = 0.875) and a new area (R2 = 0.810). Meanwhile, the time cost of the mapping model is less than 3 s, meeting the requirement for real-time mapping. These results indicate that this highly adaptable model, once appropriately trained, can be applied to rapid urban flood severity mapping, which significantly reduces its use cost in urban flood management. © 2025 The Author(s). Journal of Flood Risk Management published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.

  • Eichelmann, E., Naber, N., Battamo, A. Y., O’Sullivan, J. J., Salauddin, & Kelly-Quinn, M. (2025). A REVIEW OF THE IMPACT OF EXTREME WEATHER EVENTS ON FRESHWATER, TERRESTRIAL AND MARINE ECOSYSTEMS. Biology and Environment, 125 B, 101–134. https://doi.org/10.1353/bae.2025.a966125

    Extreme weather events (EWEs), including floods, droughts, heatwaves and storms, are increasingly recognised as major drivers of biodiversity loss and ecosystem degradation. In this systematic review, we synthesise 251 studies documenting the impacts of extreme weather events on freshwater, terrestrial and marine ecosystems, with the goal of informing effective conservation and management strategies for areas of special conservation or protection focus in Ireland.Twenty-two of the reviewed studies included Irish ecosystems. In freshwater systems, flooding (34 studies) was the most studied EWE, often linked to declines in species richness, abundance and ecosystem function. In terrestrial ecosystems, studies predominantly addressed droughts (60 studies) and extreme temperatures (48 studies), with impacts including increase in mortality, decline in growth and shift in species composition. Marine and coastal studies focused largely on storm events (33 studies), highlighting physical damages linked to wave actions, behavioural changes in macrofauna, changes in species composition and distribution, and loss in habitat cover. Results indicate that most EWEs lead to negative ecological responses, although responses are context specific.While positive responses to EWEs are rare, species with adaptive traits displayed some resilience, especially in ecosystems with high biodiversity or refuge areas.These findings underscore the need for conservation strategies that incorporate EWE projections, particularly for protected habitats and species. © 2025 Royal Irish Academy. All rights reserved.

  • 1
  • 2
  • 3
  • 4
  • Page 1 de 4
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 2025-09-20 06 h 52 (UTC)

Explorer

Axes du RIISQ

  • 2 - enjeux de gestion et de gouvernance
  • 1 - aléas, vulnérabilités et exposition (42)
  • 3 - aspects biopsychosociaux (44)
  • 4 - réduction des vulnérabilités (27)
  • 5 - aide à la décision, à l’adaptation et à la résilience (38)

Enjeux majeurs

  • Prévision, projection et modélisation
  • Inégalités et événements extrêmes (22)
  • Risques systémiques (20)

Lieux

  • Canada (23)
  • États-Unis (12)
  • Québec (province) (12)
  • Europe (5)

Secteurs et disciplines

  • Nature et Technologie (56)
  • Société et Culture (30)
  • Santé (21)

Types d'événements extrêmes

  • Inondations et crues (48)
  • Évènements liés au froid (neige, glace) (38)
  • Sécheresses et canicules (9)
  • Feux de forêts (2)

Types d'inondations

  • Fluviales (24)
  • Par embâcle (5)
  • Pluviales (3)
  • Submersion côtière (3)

Type de ressource

  • Article de colloque (1)
  • Article de revue (49)
  • Chapitre de livre (1)
  • Prépublication (2)
  • Rapport (1)
  • Thèse (9)

Année de publication

  • Entre 2000 et 2025 (63)
    • Entre 2010 et 2019 (5)
      • 2012 (1)
      • 2015 (1)
      • 2018 (1)
      • 2019 (2)
    • Entre 2020 et 2025 (58)
      • 2020 (5)
      • 2021 (8)
      • 2022 (7)
      • 2023 (9)
      • 2024 (6)
      • 2025 (21)
      • 2026 (2)

Langue de la ressource

  • Anglais (45)
  • Français (6)

Explorer

UQAM - Université du Québec à Montréal

  • Veille bibliographique sur les inondations
  • bibliotheques@uqam.ca

Accessibilité Web