Votre recherche
Résultats 2 ressources
-
Abstract Real-time precipitation data are essential for weather forecasting, flood prediction, drought monitoring, irrigation, fire prevention, and hydroelectric management. To optimize these activities, reliable precipitation estimates are crucial. Environment and Climate Change Canada (ECCC) leads the Canadian Precipitation Analysis (CaPA) project, providing near-real-time precipitation estimates across North America. However, during winter, CaPA’s 6-hourly accuracy is limited because many automatic surface observations are not assimilated due to wind-induced gauge undercatch. The objective of this study is to evaluate the added value of adjusted hourly precipitation amounts for gauge undercatch due to wind speed in CaPA. A recent ECCC dataset of hourly precipitation measurements from automatic precipitation gauges across Canada is included in CaPA as part of this study. Precipitation amounts are adjusted based on several types of transfer functions, which convert measured precipitation into what high-quality equipment would have measured with reduced undercatch. First, there are no notable differences in CaPA when comparing the performance of the universal transfer function with that of several climate-specific transfer functions based on wind speed and air temperature. However, increasing solid precipitation amounts using a specific type of transfer function that depends on snowfall intensity rather than near-surface air temperature is more likely to improve CaPA’s precipitation estimates during the winter season. This improvement is more evident when the objective evaluation is performed with direct comparison with the Adjusted Daily Rainfall and Snowfall (AdjDlyRS) dataset.
-
Abstract. The amount and phase of cold season precipitation accumulating in the upper Saint John River basin are critical factors in determining spring runoff, ice-jams, and flooding in downstream communities. To study the impact of winter and spring storms on the snowpack in the upper Saint John River (SJR) basin, the Saint John River Experiment on Cold Season Storms (SAJESS) utilized meteorological instrumentation, upper air soundings, human observations, and hydrometeor macrophotography during winter/spring 2020–21. Here, we provide an overview of the SAJESS study area, field campaign, and existing data networks surrounding the upper SJR basin. Initially, meteorological instrumentation was co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick, in early December 2020. This was followed by an intensive observation period that involved manual observations, upper-air soundings, a multi-angle snowflake camera, macrophotography of solid hydrometeors, and advanced automated instrumentation throughout March and April 2021. The resulting datasets include optical disdrometer size and velocity distributions of hydrometeors, micro rain radar output, near-surface meteorological observations, and wind speed, temperature, pressure and precipitation amounts from a K63 Hotplate precipitation gauge, the first one operating in Canada. These data are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2022). We also include a synopsis of the data management plan and data processing, and a brief assessment of the rewards and challenges of utilizing community volunteers for hydro-meteorological citizen science.