Votre recherche
Résultats 4 ressources
-
Abstract In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.
-
Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.