Votre recherche
Résultats 21 ressources
-
Abstract A quantitative and qualitative understanding of the anticipated climate-change-driven multi-scale spatio-temporal shifts in precipitation and attendant river flows is crucial to the development of water resources management approaches capable of sustaining and even improving the ecological and socioeconomic viability of rain-fed agricultural regions. A set of homogeneity tests for change point detection, non-parametric trend tests, and the Sen’s slope estimator were applied to long-term gridded rainfall records of 27 newly formed districts in Chhattisgarh State, India. Illustrating the impacts of climate change, an analysis of spatial variability, multi-temporal (monthly, seasonal, annual) trends and inter-annual variations in rainfall over the last 115 years (1901–2015 mean 1360 mm·y −1 ) showed an overall decline in rainfall, with 1961 being a change point year (i.e., shift from rising to declining trend) for most districts in Chhattisgarh. Spatio-temporal variations in rainfall within the state of Chhattisgarh showed a coefficient of variation of 19.77%. Strong inter-annual and seasonal variability in regional rainfall were noted. These rainfall trend analyses may help predict future climate scenarios and thereby allow planning of effective and sustainable water resources management for the region.
-
In this editorial, the authors (and guest editors) introduce the Special Issue titled Understanding Game-based Approaches for Improving Sustainable Water Governance: The Potential of Serious Games to Solve Water Problems. The authors take another look at the twelve contributions, starting from the subtitle question: what is the potential? The authors summarize the insights and give directions for future research.
-
Abstract Groundwater quality modelling plays an important role in water resources management decision making processes. Accordingly, models must be developed to account for the uncertainty inherent in the modelling process, from the sample measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. In the current study, fuzzy set theory is applied to groundwater-quality related decision-making in an agricultural production context; the Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) are used to develop a series of new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices and hydrological data from the Sarab Plain, Iran. Rather than drawing upon physiochemical groundwater quality parameters, the present research employs widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended as it outperforms both MFL and LFL in terms of accuracy when assessing groundwater quality using irrigation indices.
-
An implementation of bias correction and data assimilation using the ensemble Kalman filter (EnKF) as a procedure, dynamically coupled with the conceptual rainfall-runoff Hydrologiska Byråns Vattenbalansavdelning (HBV) model, was assessed for the hydrological modeling of seasonal hydrographs. The enhanced HBV model generated ensemble hydrographs and an average stream-flow simulation. The proposed approach was developed to examine the possibility of using data (e.g., precipitation and soil moisture) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility for Support to Operational Hydrology and Water Management (H-SAF), and to explore its usefulness in improving model updating and forecasting. Data from the Sola mountain catchment in southern Poland between 1 January 2008 and 31 July 2014 were used to calibrate the HBV model, while data from 1 August 2014 to 30 April 2015 were used for validation. A bias correction algorithm for a distribution-derived transformation method was developed by exploring generalized exponential (GE) theoretical distributions, along with gamma (GA) and Weibull (WE) distributions for the different data used in this study. When using the ensemble Kalman filter, the stochastically-generated ensemble of the model states generally induced bias in the estimation of non-linear hydrologic processes, thus influencing the accuracy of the Kalman analysis. In order to reduce the bias produced by the assimilation procedure, a post-processing bias correction (BC) procedure was coupled with the ensemble Kalman filter (EnKF), resulting in an ensemble Kalman filter with bias correction (EnKF-BC). The EnKF-BC, dynamically coupled with the HBV model for the assimilation of the satellite soil moisture observations, improved the accuracy of the simulated hydrographs significantly in the summer season, whereas, a positive effect from bias corrected (BC) satellite precipitation, as forcing data, was observed in the winter. Ensemble forecasts generated from the assimilation procedure are shown to be less uncertain. In future studies, the EnKF-BC algorithm proposed in the current study could be applied to a diverse array of practical forecasting problems (e.g., an operational assimilation of snowpack and snow water equivalent in forecasting models).
-
Large-scale flood risk assessment is essential in supporting national and global policies, emergency operations and land-use management. The present study proposes a cost-efficient method for the large-scale mapping of direct economic flood damage in data-scarce environments. The proposed framework consists of three main stages: (i) deriving a water depth map through a geomorphic method based on a supervised linear binary classification; (ii) generating an exposure land-use map developed from multi-spectral Landsat 8 satellite images using a machine-learning classification algorithm; and (iii) performing a flood damage assessment using a GIS tool, based on the vulnerability (depth–damage) curves method. The proposed integrated method was applied over the entire country of Romania (including minor order basins) for a 100-year return time at 30-m resolution. The results showed how the description of flood risk may especially benefit from the ability of the proposed cost-efficient model to carry out large-scale analyses in data-scarce environments. This approach may help in performing and updating risk assessments and management, taking into account the temporal and spatial changes in hazard, exposure, and vulnerability.
-
Soil erosion is a significant threat to the environment and long-term land management around the world. Accelerated soil erosion by human activities inflicts extreme changes in terrestrial and aquatic ecosystems, which is not fully surveyed/predicted for the present and probable future at field-scales (30-m). Here, we estimate/predict soil erosion rates by water erosion, (sheet and rill erosion), using three alternative (2.6, 4.5, and 8.5) Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios across the contiguous United States. Field Scale Soil Erosion Model (FSSLM) estimations rely on a high resolution (30-m) G2 erosion model integrated by satellite- and imagery-based estimations of land use and land cover (LULC), gauge observations of long-term precipitation, and scenarios of the Coupled Model Intercomparison Project Phase 6 (CMIP6). The baseline model (2020) estimates soil erosion rates of 2.32 Mg ha 1 yr 1 with current agricultural conservation practices (CPs). Future scenarios with current CPs indicate an increase between 8% to 21% under different combinations of SSP-RCP scenarios of climate and LULC changes. The soil erosion forecast for 2050 suggests that all the climate and LULC scenarios indicate either an increase in extreme events or a change in the spatial location of extremes largely from the southern to the eastern and northeastern regions of the United States.