Votre recherche
Résultats 7 ressources
-
Adaptation to climate change is a challenge that is complex and involves increasing risk. Efforts to manage these risks involve many decision-makers, conflicting values, competing objectives and methodologies, multiple alternative options, uncertain outcomes, and debatable probabilities. Adaptation occurs at multiple levels in a complex decision environment and is generally evaluated as better–worse, not right–wrong, based on multiple criteria. Identifying the best adaptation response is difficult. Risk management techniques help to overcome these problems. Here, risk management is presented as a decision-making framework that assists in the selection of optimal strategies (according to various criteria) using a systems approach that has been well defined and generally accepted in public decision-making. In the context of adapting to climate change, the risk management process offers a framework for identifying, assessing, and prioritizing climate-related risks and developing appropriate adaptation responses. The theoretical discussion is illustrated with an example from Canada. It includes (a) the assessment of climate change-caused flood risk to the municipal infrastructure for the City of London, Ontario, Canada, and (b) analysis of adaptation options for management of the risk in one of the watersheds within the City of London – Dingman Creek.
-
Abstract Study Region: In Canada, dams which represent a high risk to human loss of life, along with important environmental and financial losses in case of failure, have to accommodate the Probable Maximum Flood (PMF). Five Canadian basins with different physiographic characteristics and geographic locations, and where the PMF is a relevant metric have been selected: Nelson, Mattagami, Kenogami, Saguenay and Manic-5. Study Focus: One of the main drivers of the PMF is the Probable Maximum Precipitation (PMP). Traditionally, the computation of the PMP relies on moisture maximization of high efficiency observed storms without consideration for climate change. The current study attempts to develop a novel approach based on traditional methods to take into account the non-stationarity of the climate using an ensemble of 14 regional climate model (RCM) simulations. PMPs, the 100-year snowpack and resulting PMF changes were computed between the 1971-2000 and 2041-2070 periods. New Hydrological Insights for the Region: The study reveals an overall increase in future spring PMP with the exception of the most northern basin Nelson. It showed a projected increase of the 100-year snowpack for the two northernmost basins, Nelson (8%) and Manic-5 (3%), and a decrease for the three more southern basins, Mattagami (-1%), Saguenay (-5%) and Kenogami (-9%). The future spring PMF is projected to increase with median values between -1.5% and 20%.
-
This paper examines the extent to which economic development decreases a country's risk of experiencing climate-related disasters as well as the societal impacts of those events. The paper proceeds from the underlying assumption that disasters are not inherently natural, but arise from the intersection of naturally-occurring hazards within fragile environments. It uses data from the International Disaster Database (EM-DAT),(1) representing country-year-level observations over the period 1980-2007. The study finds that low-income countries are significantly more at risk of climate-related disasters, even after controlling for exposure to climate hazards and other factors that may confound disaster reporting. Following the occurrence of a disaster, higher income generally diminishes a country's social vulnerability to such happenings, resulting in lower levels of mortality and morbidity. This implies that continued economic development may be a powerful tool for lessening social vulnerability to climate change.© 2016 The Author(s). Disasters © Overseas Development Institute, 2016. Language: en