Votre recherche
Résultats 9 ressources
-
The communication of information about natural hazard risks to the public is a difficult task for decision makers. Research suggests that newer forms of technology present useful options for building disaster resilience. However, how effectively these newer forms of media can be used to inform populations of the potential hazard risks in their community remains unclear. This research uses primary data from an in-person survey of 164 residents of Newport Beach, California during the spring of 2014 to ascertain the current and preferred mechanisms through which individuals receive information on flood risks in their community. Factor analysis of survey data identified two predominant routes of dissemination for risk information: older traditional media and newer social media sources. A logistic regression model was specified to identify predictors for choosing a particular communication route. This analysis revealed that age is the central factor in predicting the sources people use to receive risk information. We follow the analysis by discussing this finding and its policy implications.
-
Abstract In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m 2 /a ($/m 2 /a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.
-
Gravel-bed rivers are disproportionately important to regional biodiversity, species interactions, connectivity, and conservation. , Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.
-
The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.
-
Although numerous studies have been conducted on the vulnerability of marginalized groups in the environmental justice (EJ) and hazards fields, analysts have tended to lump people together in broad racial/ethnic categories without regard for substantial within-group heterogeneity. This paper addresses that limitation by examining whether Hispanic immigrants are disproportionately exposed to risks from flood hazards relative to other racial/ethnic groups (including US-born Hispanics), adjusting for relevant covariates. Survey data were collected for 1283 adult householders in the Houston and Miami Metropolitan Statistical Areas (MSAs) and flood risk was estimated using their residential presence/absence within federally-designated 100-year flood zones. Generalized estimating equations (GEE) with binary logistic specifications that adjust for county-level clustering were used to analyze (separately) and compare the Houston (N = 546) and Miami (N = 560) MSAs in order to clarify determinants of household exposure to flood risk. GEE results in Houston indicate that Hispanic immigrants have the greatest likelihood, and non-Hispanic Whites the least likelihood, of residing in a 100-year flood zone. Miami GEE results contrastingly reveal that non-Hispanic Whites have a significantly greater likelihood of residing in a flood zone when compared to Hispanic immigrants. These divergent results suggest that human-flood hazard relationships have been structured differently between the two MSAs, possibly due to the contrasting role that water-based amenities have played in urbanization within the two study areas. Future EJ research and practice should differentiate between Hispanic subgroups based on nativity status and attend to contextual factors influencing environmental risk disparities.
-
INTRODUCTION A substantial body of research has focused on the vulnerability of racial/ethnic minorities to hazards and disasters. This work has lumped people with diverse characteristics into general groups, such as "Hispanic" or "Latino/a" (Bolin 2007). Today, Hispanic immigrants represent an important group in U.S. society due to their large and increasing population. According to American Community Survey estimates, as of 2013 there were 21 million foreign-born Hispanics in the U.S., representing 52.5 percent of the total foreign-born population and 6 percent of the U.S. population. Hispanic immigrants are distinguishable from U.S.--born Hispanics due to their concerns about immigration status as well as cultural and linguistic differences. Treating Hispanics as a homogenous group may mask important differences between foreign-born and U.S.--born Hispanics and lead to erroneous conclusions about their disaster vulnerabilities. In order to address the particular risks experienced by foreign-born Hispanics in the U.S., more research characterizing salient dimensions of their vulnerability to hazards and disasters is needed. This study highlights particular vulnerabilities of foreign-born Hispanics living at risk to flooding and hurricanes in the Houston, Texas, and Miami, Florida, Metropolitan Statistical Areas (MSAs) by examining their self-protective actions, and their perceptions of and knowledge about flood risks, in comparison to both U.S.--born non-Hispanic whites and U.S.--born Hispanics. It addresses two research questions: what differences exist in self-protective actions and perceptions of risk between Hispanic immigrants, U.S.--born Hispanics, and U.S.--born white residents who live at high risk to flooding and hurricanes; and why do differences in self-protective actions and perceptions of risk exist between Hispanic immigrants, U.S.--born Hispanics, and U.S.--born white residents who live at high risk to flooding and hurricanes? Approaching these questions, we analyze primary structured survey and semistructured interview data using a mixed-method analysis approach, which enables us to clarify particular factors that place Hispanic immigrants at increased risk to flood and hurricane disasters. LITERATURE REVIEW The last three decades have marked the emergence of a social-vulnerability perspective on hazards and disasters, which emphasizes the influence of inequalities on differential risks (Hewitt 1983, 1997; Peacock and others 1997; Wisner and others 2004; Tierney 2006; Thomas and others 2013). From this perspective, risk is determined partly by human exposure to a hazard and partly by people's social vulnerability. While there is debate about the meaning and measurement of social vulnerability, the following definition is useful: "the characteristics of a person or group and their situation that influence their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard" (Wisner and others 2004, 11). In this study, we analyze the social vulnerability of Hispanic immigrants in terms of self-protection from flood/hurricane hazards, and perceptions of and knowledge about flood/hurricane risks. Here, self-protection is defined as any structural or nonstructural strategy used by households to minimize loss and enable recovery from the impacts of flood or hurricane hazard exposures (NRC 2006). Self-protection strategies in the context of flood and hurricane hazards include home structural as well as nonstructural actions. Structural mitigation actions include elevating home structures, flood-proofing homes, and installing hurricane shutters (FEMA 2014). They also include nonstructural actions, such as maintaining flood insurance. In terms of nonstructural self-protection strategies, in the U.S., flood insurance plays an important protective role, since it provides compensation for property losses. Disaster preparedness is another dimension of nonstructural self-protection that has been examined extensively (Mulilis and Lippa 1990; Faupel and others 1992; Norris and others 1999; Sattler and others 2000; Miceli and others 2008; Borque and others 2013), and can include evacuation planning, maintaining basic supplies (for example, a first aid kit) and being alert (for example, being attentive to hazard reports). …