Votre recherche
Résultats 12 ressources
- 
            
        Mathematical modelling is a well-accepted framework to evaluate the effects of wetlands on stream flow and watershed hydrology in general. Although the integration of wetland modules into a distributed hydrological model represents a cost-effective way to make this assessment, the added value brought by landscape-specific modules to a model's ability to replicate basic hydrograph characteristics remains unclear. The objectives of this paper were to: (i) present the adaptation of PHYSITEL (a GIS) to parameterize isolated and riparian wetlands; (ii) describe the integration of specific isolated wetland and riparian wetland modules into HYDROTEL, a distributed hydrological model; and (iii) evaluate the performance of the updated modelling platform with respect to the capacity of replicating various hydrograph characteristics. To achieve this, two sets of simulations were performed (with and without wetland modules) and the added-value was assessed at three river segments of the Becancour River watershed, Quebec, Canada, using six general goodness-of-fit indicators (GOFIs) and fourteen water flow criteria (WFC). A sensitivity analysis of the wetland module parameters was performed to characterize their impact on stream flows of the modelled watershed. Results of this study indicate that: (i) integration of specific wetland modules can slightly increase the capacity of HYDROTEL to replicate basic hydrograph characteristics and (ii) the updated modelling platform allows for the explicit assessment of the impact of wetlands (e.g., typology, location) on watershed hydrology. 
- 
            
        Summary Across the southern Canadian Prairies, annual precipitation is relatively low (200–400mm) and periodic water deficits limit economic and environmental productivity. Rapid population growth, economic development and climate change have exposed this region to increasing vulnerability to hydrologic drought. There is high demand for surface water, streamflow from the Rocky Mountains in particular. This paper describes the application of dendrohydrology to water resource management in this region. Four projects were initiated by the sponsoring organizations: a private utility, an urban municipality and two federal government agencies. The fact that government and industry would initiate and fund tree-ring research indicates that practitioners recognize paleohydrology as a legitimate source of technical support for water resource planning and management. The major advantage of tree-rings as a proxy of annual and seasonal streamflow is that the reconstructions exceed the length of gauge records by at least several centuries. The extent of our network of 180 tree-ring chronologies, spanning AD 549–2013 and ∼20° of latitude, with a high density of sites in the headwaters of the major river basins, enables us to construct large ensembles of tree-ring reconstructions as a means of expressing uncertainty in the inference of streamflow from tree rings. We characterize paleo-droughts in terms of modern analogues, translating the tree-ring reconstructions from a paleo-time scale to the time frame in which engineers and planners operate. Water resource managers and policy analysts have used our paleo-drought scenarios in their various forms to inform and assist drought preparedness planning, a re-evaluation of surface water apportionment policy and an assessment of the reliability of urban water supply systems. 
- 
            
        Les bassins versants du Moyen‐Nord quebecois (49e au 55e parallele) se distinguent par leur climatologie et le pourcentage eleve de territoires couverts par des lacs et milieux humides (de l’ordre de 20 a 30 %) et, surtout, par leur importante contribution a la production electrique du Quebec; le complexe de la riviere La Grande generant environ 40% de l’electricite quebecoise. Dans le contexte de la gestion de la production d’electricite, Hydro‐Quebec Production fait la prevision des apports aux reservoirs de ce complexe a l’aide d’un modele hydrologique global. Par ailleurs, depuis les annees 1980, le milieu boreal quebecois a subi des hausses de temperature et de precipitation qui ont modifie le regime des apports aux reservoirs. Compte tenu de ces changements et des caracteristiques physiographiques des bassins boreaux, il a ete propose d’utiliser un modele hydrologique distribue a base physique pour examiner l’impact sur ces apports des projections climatiques produites par Ouranos. En l’occurrence le modele HYDROTEL dont la prise en mains est en train d’etre completee par Hydro‐Quebec Production. Le modele qui est maintenant convenablement cale pour un certain nombre de bassins repond aux attentes dans les bassins du sud du Quebec. Toutefois, pour les grands bassins du Nord comme ceux du Complexe La Grande, l’utilisation du modele requiert des travaux d’adaptations, entre autres, aux niveaux de la modelisation des milieux humides et de la desagregation spatiale des precipitations simulees par les modeles climatiques. Les objectifs generaux de ce projet etaient d’accroitre notre comprehension de l’hydrologie du moyen nord afin qu’elle soit bien representee dans HYDROTEL tout en tenant compte des incertitudes parametriques associees aux differentes equations gouvernant les processus physiques. Ces objectives ont ete declines en trois activites de travail : (AT1) modelisation des processus hydrologiques; (AT2) calage et analyses de sensibilite, d’identifiabilite et d’incertitudes des parametres de calage d’HYDROTEL; et (AT3) amelioration des plateformes informatiques HYDROTEL et PHYSITEL, ce dernier etant un SIG dedie a la construction des bases de donnees de modeles hydrologiques distribues. Pour Ouranos et Hydro‐Quebec les principales realisations issues de ce projet incluent : (i) le developpement d’une methode eprouvee de desagregation sous grille de la precipitation mesoechelle permettant d’evaluer a fine echelle spatiale l’impact des changements climatiques sur les precipitations; (ii) une meilleure comprehension de la dynamique des ecoulements, du stockage de l’eau et de l’evapotranspiration d’un petit bassin versant boreal incluant une grande une tourbiere minerotrophe aqualysee; (iii) l’evaluation du parametrage de la sublimation et la relocalisation de la neige dues au vent et l’identification du besoin d’inclure le rayonnement sous la canopee pour bien reproduire la crue avec un modele complexe de l'evolution du couvert nival; (iv) la detection de la quasi neutralite frequente (~76% du temps, majoritairement le jour) de l’atmosphere au‐dessus d’un milieu humide causee par une turbulence mecanique forte et une grande inertie thermique; conditions ayant permises le developpement d’un modele simple d’evapotranspiration des milieux humides base le transfert massique et la stabilite atmospherique; (v) le developpement d’un modele de rayonnement net base uniquement sur des donnees de temperatures journalieres (min, max) et une estimation des parametres permettant de valider l’utilisation de l’equation de Penman‐Monteith dans le nord quebecois; (vi) la hierarchisation des parametres de calage d’HYDROTEL selon la saison et le developpement d’une methode permettant d’evaluer l’incertitude sur les debits simules et d’identifier son importance durant la fonte et l’etiage estival; (vii) dans un contexte d’analyse frequentielle des debits simules, evaluation de l’incertitude parametrique par rapport a l’incertitude statistique, cette derniere dominant pour les periodes de retour superieures a cinq ans; (viii) a l’aide de PHYSITEL, la premiere discretisation du complexe de la riviere La Grande (136 648 km2) en six sousbassins (LG1, LG2, LG3, LG4, La Forge 1 & 2,et Caniapiscau) leur subdivision en versants permettant le calcul de crues maximales probables a l’aide d’HYDROTEL; et (ix) le developpement d’une version 64 bits d’HYDROTEL incluant de nouveaux modules de de calculs de la temperature du sol et des bilans hydriques des milieux humides et isoles. L'avancement de nos comprehensions de l'hydrologie des milieux humides et du milieu boreal en general a ete a la base du developpement des versions adaptees d'HYDROTEL et de PHYSITEL qui permettront a Hydro‐Quebec d'apprehender, avec une modelisation distribuee, l'impact des changements climatiques sur le complexe de la riviere La Grande. Ces logiciels sont transposables a l’ensemble du milieu boreal canadien. Une entente conclut, depuis 2005, entre l’INRS et Hydro‐Quebec (HQ) permet d’ailleurs une distribution commerciale des differentes versions d’HYDROTEL avec interfaces usagers de meme qu’une distribution communautaire du noyau de calcul. Cette synergie a permis de mettre en commun des ressources et des expertises qui facilitent les echanges scientifiques et techniques entre les concepteurs d’HYDROTEL, le Centre d’expertise hydrique du Quebec (CEHQ), HQ, l’IREQ (Institut de recherche en electricite du Quebec) et d’autres usagers (ex. : l’IMTA, Instituto Mexicano de Technologia del Agua). Au total, plus d’une quarantaine de licences ont ete distribuees tant pour des besoins d’enseignement (Universite de Sherbrooke) et de recherche (Universite Laval, UQTR, UQAC, IREQ, Ecole de Technologie Superieure, INRA de Montpellier, Environnement Canada, Agriculture et Agroalimentaire Canada), que des besoins de prevision hydrologique (IMTA, Ville de Quebec, Centre d’expertise hydrique du Quebec, HQ). La modularite informatique d’HYDROTEL se prete egalement bien a cette synergie car elle offre la possibilite de partager le savoir‐faire et, par l’entremise d’un site internet public (CodePlex), de mettre a la disponibilite de tous les nouvelles versions du noyau de calcul. Ces developpements ont permis a l’equipe de l’INRS‐ETE d’acquerir une reconnaissance internationale en modelisation hydrologique distribuee. En effet, HYDROTEL et PHYSITEL ont dans le passe ete identifie comme les outils a utiliser dans le cadre d’appels de proposition de projets de determination du potentiel hydroelectrique finances par la Banque Mondiale [World Bank, 2009]. 
- 
            
        Abstract. While disaster studies researchers usually view risk as a function of hazard, exposure, and vulnerability, few studies have systematically examined the relationships among the various physical and socioeconomic determinants underlying disasters, and fewer have done so through seismic risk analysis. In the context of the 1999 Chi-Chi earthquake in Taiwan, this study constructs three statistical models to test different determinants that affect disaster fatality at the village level, including seismic hazard, exposure of population and fragile buildings, and demographic and socioeconomic vulnerability. The Poisson regression model is used to estimate the impact of these factors on fatalities. Research results indicate that although all of the determinants have an impact on seismic fatality, some indicators of vulnerability, such as gender ratio, percentages of young and aged population, income and its standard deviation, are the important determinants deteriorating seismic risk. These findings have strong social implications for policy interventions to mitigate such disasters. 
- 
            
        The observed increases in hurricane losses are often thought to result solely from societal change. A regression-based analysis of US economic losses reveals an upward trend between 1900 and 2005 that is not explained by increasing vulnerability. 
- 
            
        Abstract A leading challenge in measuring social vulnerability to hazards is for output metrics to better reflect the context in which vulnerability occurs. Through a meta-analysis of 67 flood disaster case studies (1997–2013), this paper profiles the leading drivers of social vulnerability to floods. The results identify demographic characteristics, socioeconomic status, and health as the leading empirical drivers of social vulnerability to damaging flood events. However, risk perception and coping capacity also featured prominently in the case studies, yet these factors tend to be poorly reflected in many social vulnerability indicators. The influence of social vulnerability drivers varied considerably by disaster stage and national setting, highlighting the importance of context in understanding social vulnerability precursors, processes, and outcomes. To help tailor quantitative indicators of social vulnerability to flood contexts, the article concludes with recommendations concerning temporal context, measurability, and indicator interrelationships. 
- 
            
        Abstract A disproportionate share of the global economic and human losses caused by environmental shocks is borne by people in the developing nations. The mountain region of Hindu-Kush Himalaya (HKH) in South Asia is threatened by numerous flooding events annually. An efficient disaster risk reduction often needs to rest upon location-based synoptic view of vulnerability. Resolving this deficit improves the ability to take risk reduction measures in a cost-effective way, and in doing so, strengthens the resilience of societies to flooding disasters. The central aim of this research is to identify the vulnerable locations across HKH boundary from the perspective of reported history of economic and human impacts due to occurrence of flooding disasters. A detailed analysis indicates a very high spatial heterogeneity in flooding disaster occurrence in the past 6 decades. The most recent decade reported highest number of disasters and greater spatial coverage as compared to the earlier decades. The data indicates that, in general, economic impacts of flooding disasters were notably higher in Pakistan, Afghanistan and Nepal. On the other hand, vulnerability scenarios with respect to human impacts were diverse for different countries. In terms of morbidity and mortality, Bangladesh, Pakistan, Bhutan and India were detected to be most susceptible to human impacts. Although Bhutan had seen lesser number of flooding disasters, higher population living within disaster prone region make them vulnerable. In summary, complex interactions between natural and socio-economic conditions play a dominant role to define and characterize the type and magnitude of vulnerability of HKH countries to disaster occurrence and their economic and human impacts. 
- 
            
        The global impacts of river floods are substantial and rising. Effective adaptation to the increasing risks requires an in-depth understanding of the physical and socioeconomic drivers of risk. Whereas the modeling of flood hazard and exposure has improved greatly, compelling evidence on spatiotemporal patterns in vulnerability of societies around the world is still lacking. Due to this knowledge gap, the effects of vulnerability on global flood risk are not fully understood, and future projections of fatalities and losses available today are based on simplistic assumptions or do not include vulnerability. We show for the first time (to our knowledge) that trends and fluctuations in vulnerability to river floods around the world can be estimated by dynamic high-resolution modeling of flood hazard and exposure. We find that rising per-capita income coincided with a global decline in vulnerability between 1980 and 2010, which is reflected in decreasing mortality and losses as a share of the people and gross domestic product exposed to inundation. The results also demonstrate that vulnerability levels in low- and high-income countries have been converging, due to a relatively strong trend of vulnerability reduction in developing countries. Finally, we present projections of flood losses and fatalities under 100 individual scenario and model combinations, and three possible global vulnerability scenarios. The projections emphasize that materialized flood risk largely results from human behavior and that future risk increases can be largely contained using effective disaster risk reduction strategies. 
- 
            
        Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to adapt and respond to floods, which in turn largely depends on their social vulnerability. This study shows how a joint assessment of hazard, exposure and social vulnerability provides valuable information for the evaluation of FRM strategies. The adopted methodology uses data on hazard and exposure combined with a social vulnerability index. The relevance of this state-of-the-art approach taken is exemplified in a case-study of Rotterdam, the Netherlands. The results show that not only a substantial share of the population can be defined as socially vulnerable, but also that the population is very heterogeneous, which is often ignored in traditional flood risk management studies. It is concluded that FRM measures, such as individual mitigation, evacuation or flood insurance coverage should not be applied homogenously across large areas, but instead should be tailored to local characteristics based on the socioeconomic characteristics of individual households and neighborhoods.